# Robot Arm Torque Tutorial

Posted on 17/09/2018 by cbenson in Robot design basics
Modified on: 28/03/2023
Project
Press to mark as completed
Introduction

This tutorial is intended to complement the Robot Arm Torque Calculator found in the Dynamic Tools section of GoRobotics. The equations used in the calculator to determine the torque required at any given lifting joint (raising the arm vertically) in a robotic arm are presented here. Note that the

## Robot Arm Torque Tutorial

This tutorial is intended to complement the Robot Arm Torque Calculator found in the Dynamic Tools section of GoRobotics. The equations used in the calculator to determine the torque required at any given lifting joint (raising the arm vertically) in a robotic arm are presented here. Note that the term "actuator" is used rather than motor because not all robotic arms necessarily use servo motors (some may use pneumatics, hydraulics, etc.).

Torque (T) is defined as a turning or twisting “force” and is calculated using the following relation: The force (F) acts at a length (L) from a pivot point. In a vertical plane, the force acting on an object (causing it to fall) is the acceleration due to gravity (g = 9.81m/s2) multiplied by its mass: The force above is also considered the object's weight (W). The torque required to hold a mass at a given distance from a pivot is therefore: This can be found similarly by doing a torque balance about a point. Note that the length L is the PERPENDICULAR length from the pivot to the force.

Therefore, replacing F with m*g, we find the same equation above. This method is the more accurate way to find torque (using a torque balance). In order to estimate the torque required at each joint, we must choose the worst case scenario.

In the above image, a link of length L is rotated clockwise. Only the perpendicular component of length between the pivot and the force is taken into account. We observe that this distance decreases from L3 to L1 (L1 being zero). Since the equation for torque is length (or distance) multiplied by the force, the greatest value will be obtained using L3, since F does not change. You can similarly rotate the link counterclockwise and observe the same effect. It can be safe to assume that the actuators in the arm will be subjected to the highest torque when the arm is stretched horizontally. Although your robot may never be designed to encounter this scenario, it should not fail under its own weight if stretched horizontally without a load. The weight of the object (the "load") being held (A1 in the diagram), multiplied by the distance between its center of mass and the pivot gives the torque required at the pivot. The tool takes into consideration that the links may have a significant weight (W1, W2..) and assumes its center of mass is located at roughly the center of its length. The torques caused by these different masses must be added: Note: do not confuse 'A' (the weight of the actuator or load) with 'a' (acceleration). You may note that the actuator weight A2 as shown in the diagram below is not included when calculating the torque at that point. This is because the length between its center of mass and the pivot point is zero. Similarly, when calculating the torque required by the actuator A3, its own mass is not considered. The torque required at the second joint must be re-calculated with new lengths, as shown below (applied torque shown in pink):

#### Thanks for helping to keep our community civil!

Notify staff privately
It's Spam
This post is an advertisement, or vandalism. It is not useful or relevant to the current topic.

x
You have to be logged in to chat

Our chat is a buzzing-with-life place where our community members join to discuss and foster great conversations.

Whether it's about their latest robotics project, questions about electronics, debates about the industry, or just talking between friends.

You have to be logged in to chat