2D / 3DOF Inverse Kinematics

We know the lenghts of AB,BC,CT We know the Target coordinates T(x,y) We choose the angle CT makes with the origin (t_angle) We consifer that A is our origin (0,0) B y (view from side) A (0,0) x start with calculating the position of C C(x)=Tx+CT*cos(t_angle) C(y)=Ty+CT*sin(t_angle)

now work on the ABC triangle

calculate the length of AC using the hypotenuse AC=sqr(Cx^2+Cy^2) BS2 code : AC = Cx HYP Cy

and the angle AC is making with the x axis (ac_angle) ac_angle=atan(Cy/Cx) B2 code : ac_angle = Cx ATAN Cy

with the 3 lenghts of a triangle, we can calculate all its angles by using the law of sines $\underline{http://en.wikipedia.org/wiki/Law of sines}$ that says sin(A)/BC = sin(B)/AC = sin(C)/AB = AB*BC*AC/2S

S is the surface of ABC, we can use Heron's formula $S=sqr(s^*(s-AB)(s-BC)(s-AC))$

s is the semiperimeter of ABC s=(AB+BC+AC)/2

start from the end... calculate s then S

the law of sines gives us $sin(A) = 2S/(AB^*AC)$ $A=asin(2S/(AB^*AC))$ $B=asin(2S/(AB^*BC))$ C=asin(2S/(AC/BC))

now go out of this ABC triangle to have the SERVO angles servo_A = ac_angle + A servo_B = B servo_C = t_angle - servo_B - servo_A

That's all folks !