

TITLE: Mechatronics Project – Pepper Sorting Device

COURSE: MENG 3011 – Mechatronics

LECTURER: Dr Nadine Sangster

 GROUP MEMBERS:

Vernel Young - 64271

Sam Greenidge - 63240

Gerard Ragbir - 65728

DATE DUE: 14th April 2016

MENG3011 MECHATRONICS PROJECT

1 | P a g e

Table of Contents

1 DESIGN SUMMARY .. 2

2 SYSTEM DETAILS.. 4

2.1 Process flow .. 4

2.2 System design ... 6

2.3 Main Components ... 8

2.3.1 LCD Display .. 8

2.3.2 Load Sensor ... 9

2.3.3 Arduino Mega ... 9

2.3.4 Keypad ... 9

2.3.5 Colour sensor .. 10

2.3.6 Proximity Sensor ... 11

2.3.7 Sorting Servo ... 11

3 DESIGN EVALUATION .. 12

4 PARTS LIST ... 14

5 CHALLENGES ... 15

6 Works Cited ... 17

7 APPENDIX A ... 18

8 APPENDIX B ... 19

MENG3011 MECHATRONICS PROJECT

2 | P a g e

1 DESIGN SUMMARY

This project sought to develop a device to sort items, specifically peppers. The sorting

categories are by colours: especially green and ripe peppers. The device also counts and

measures the weight of each respective bin where the sorted peppers are stored. The device,

as shown in figure 1, consists of several key parts. The intake area where the unsorted peppers

are placed (A). The automated transport system, which is a conveyor belt (B). A user

interactive control panel which is connected to an Arduino Mega microcontroller (C); An

actuated arm (D) switches to either of its positions to allow the peppers to change direction,

either to the left or the right depending on the detected colour. Finally, the sorted peppers

are collected in two bins (E). Each bin can check for the changes in weight, so as the weight

increases to a desired cut off point, the machine will alert the operator then auto turn off.

Figure 1: Picture showing a labelled side profile of the device prototype.

MENG3011 MECHATRONICS PROJECT

3 | P a g e

The dispenser assembly located at A, in figure 1, consists of a collection tray and a

feeder tray coupled together. As items (peppers) are loaded onto the collection tray, they fall

into the feeder and settle near the aperture. The agitator motor (not shown above, located

behind the plane of the image) causes a vibration to constantly displace the peppers in single

file onto the conveyor belt, which is turned and begins at B.

The arms at D will push aside any incoming peppers according to its determined

colour. The peppers are resilient enough to fall into the short drop that is at E, where a

collection pan will receive the separated peppers. The controller and interface are powered

at C and is the only position where the operator can interact with the system.

The device sorts peppers by two categories: Green and Non-Green (includes orange,

red and mixes), since the colour has often served as an indicator of spiciness, a la Scoville

Heat Scale.

MENG3011 MECHATRONICS PROJECT

4 | P a g e

2 SYSTEM DETAILS

2.1 Process flow
Figure 2 shows a simplified side view of the machine, while figure 3 shows the logical

flow of the process. The system operates on a general principle of sorting items. However, for

specifying a particular application, the items in use for the prototype were those of pimento

peppers. When the machine process is started, the items are required to be loaded at the

pepper shoot into a dispenser. The operator inputs the required quantity or weight desired

into the keypad. The operator then starts the machine.

With the system started, the conveyor system would start to move and the dispenser’s

agitator (a controlled motor) applies a rapidly changing force to the dispenser. This allows for

peppers lodged or stuck at the cavity/aperture to be move around until they become freed

as well as to ensure that peppers leave the dispenser in single file. When a single pepper gets

through the cavity, it becomes caught by the conveyor system and is carried to the sensing

and sorting electronics.

Figure 2: Showing a simplified view of the device.

MENG3011 MECHATRONICS PROJECT

5 | P a g e

Figure 3: Showing Operational Flow Chart

An ultrasonic transducer pings the plane above the conveyor scanning for any item en

route to the opposite end of the conveyor, and signals the controller to halt the belt in the

event that it does detect one. This triggers the colour sensor to power on its array of light

emitting diodes (LEDs) to illuminate the surface of the peppers and sense the colour. If the

colour sensed is indeterminate, the sensor will resample the pepper. The controller,

depending on the colour range selected, will adjust an arm suspended at the end of the

conveyor belt and actuate it using a servomotor causing the pepper to be channelled in the

desired direction.

MENG3011 MECHATRONICS PROJECT

6 | P a g e

At the opposite end of the conveyor are two collection bins. Each collection bin sits

atop a load cell, which is connected to a bridge and consequently the H-bridge system is then

attached to a Load Cell Amplifier. Each load cell measures the weight distributed over it within

the bin and feeds back to the controller. The controller in turn compares the desired weight

input at time of initial setup on the keypad. Should the desired weight be reached for either

or both bins, the machine will alert the user and auto shut off until the operator resets the

process and restarts it. The same holds for when the ultrasonic transducer detects an item in

its path, it will add a single integer to the count. The controller, to match if any initially set

condition for quantity is met, also does a comparison. If this occurs, the machine will also halt

operation and alert the user by playing a tune.

 The entire process is automated requiring hardly any manual intervention. The

conveyor adjusts based on the determined requirements of the system. In the event of failure,

the conveyor has a redundant motor which is capable of supplying the same torque to the

belt and keeping it in motion.

2.2 System design

Figure 4 shows a functional block diagram of the system, its input/output relations and the

flow of information. The system uses a nonlinear two-position control method to make logical

decisions. It consists of several high level functions, namely:

 Main logic - The main logic controls the general program flow and follows a

predetermined order of execution for each of the other logical functions within the

system. It also keeps a record of the system state, which is queried by the other

functions. It receives digital input from the operator though the keypad or LCD push

button menu and outputs information to the LCD screen or buzzer.

 Selection logic - The selection logic function works in conjunction with the Sorting logic

function to detect, select and sort the peppers. It also controls the ON/OFF state of

the conveyor belt. It receives digital information from a proximity sensor, which

detects whenever a pepper passes within its scanning range, and digital system state

data to the sorting logic and the main logic

MENG3011 MECHATRONICS PROJECT

7 | P a g e

 Capacity logic – The capacity logic function monitors each of the load sensor attached

to each pepper colour bin against the weight limit set by the operator. It receives

digital information from a 24-bit ADC/load cell amplifier. The information came as an

analogy input from the load sensors, which is sent to the load cell amplifier/ADC unit.

 Dispenser logic – The dispenser logic controls the ON/OFF state of the dispenser. It in

turn is controlled by system state data produced by the selection logic and the sorting

logic.

 Sorting logic. The sorting logic controls the sorting of the peppers. It controls the

operation of the sorting servomotor with in turn directs the pepper flow on the

conveyor belt. It receives digital data from the colour sensor, which in turn came from

the sampled pepper.

Figure 4: System FBD

MENG3011 MECHATRONICS PROJECT

8 | P a g e

Table 1 shows the design specification of the system.

Table 1: Design specification

Category Requirements Comments

GEOMETRY  Maximum Length - 30 in

 Maximum Width – 12 in

 Maximum Height - 18 in

PERFORMANCE  Minimum sorting speed - 1 pepper/min

 Maximum load capacity – 50kg

ENVIRONMENT  Temperature range – 15 - 25 deg

 Humidity range – 40 – 70%

SAFETY  No loose parts

 Have auto shut down

 Prevents accidental start-up

OPERATION  Indoor use only

COST  Maximum manufacturing cost - $ 700.00

2.3 Main Components

The following subsection takes a brief look at the main components in the system, which

implements the systems functions. Appendix A provides a detailed wiring diagram of these

components.

2.3.1 LCD Display

The LCD used in the project is a two row, sixteen-character display. To enable the viewing of

information relating to the weight and quantity of green and ripe peppers sorted by the

system, the data is broken up into two display events. Each event is cycled for in a four (4)

second period. Therefore, the operator will observed the weight of green and ripe peppers

shown for 4sec then the display will flip and show the quantity of green and ripe peppers.

The display also came with a built-in push button menu. Each button was assigned the

functions: System start/stop; System debug start/stop and Scale reset, see figure .

MENG3011 MECHATRONICS PROJECT

9 | P a g e

Figure 5: Control Interface

2.3.2 Load Sensor

The project contains two strain gauges, which acts as load sensors. Each sensor have a

maximum capacity of 50kg. It should be pointed out; there are two types of load cells: Full

Load Cells, which include the full part of the H-bridge, and Partial Load Cells, which act as a

quarter-bridge (of a H-bridge setup). The ones in use are the Partial Load Cells/load sensors,

and unfortunately, there was no documentation on the actual proper setup from the

manufacturer to determine the difference between either categories.

2.3.3 Arduino Mega

The controller for the sorting device was implemented on an Arduino Mega microcontroller.

This amounts to approximately 1000 lines of lines of code in the Arduino C/C++ language,

see Appendix B for code details. The mega is therefore the ‘brain’ of the system. It controls

all the inputs and outputs, which allows for the smooth interfacing of sensors, relays,

transistor and other discrete electronic components as well as actuators.

2.3.4 Keypad

The keypad consists of sixteen buttons arranged in a 4-by-4 grid (4x4 array). Each row and

column of this array is linked to a single pin arranged as 4-rows and 4-columns. When a button

is pressed, it outputs a signal to the logic board in the form of a matrix coordinate. For

MENG3011 MECHATRONICS PROJECT

10 | P a g e

example, button 1 would correspond to r1c1 (row 1 column 1) while the # button would

coordinate to r4c3. As such, Arduino Mega digital pins 22 and 26 would signal for the former

case, and pin 25 and 28 for the latter case. Figure 6 show the pin configuration of the keypad.

Figure 6: Pin Configuration for the Keypad

The keypad has the following four menu entry modes for each of its lettered buttons:

A- Enter Quantity of Green Peppers,

B- Enter Quantity of Red Peppers,

C- Enter Weight of Green Peppers and

D- Enter Weight of Red Peppers.

2.3.5 Colour sensor

The projects includes and RGB colour sensor. The colour sensor works by shining white light

onto the peppers. The incident light is reflected from the surface of the peppers into the

optoelectronic aperture measuring the respective Red-Green-Blue profile (RGB), each colour

is calibrated to return a value within the range of 0-255. Zero being dark and 255 being full

colour. The logic controller determines the ranges fall-in point, that is: more green or more

red, as a means to determine the colour generalization. Typically, peppers may possess a wide

range of colours or mixtures of colours due to their bio chromes, also known as chromophores

MENG3011 MECHATRONICS PROJECT

11 | P a g e

(Encyclopaedia Britannica, 2015). These natural pigments, especially for peppers, exists in the

range of red, green or yellow. A mixture of these together may produce colours such as

orange, a mix of green, red and/or yellow spots, see figure 7.

Figure 7: shows the variation of Pimento Peppers by shape, size and colours.

2.3.6 Proximity Sensor

The sorting device uses an ultrasonic sensor to detect the presence or absence of a pepper on the

conveyor belt. This sensor have a range of 0 to 240cm but is only required to detect peppers within a

0 to 15cm range. This sensor uses the time of fight principle to measure song waves as they travel to

and from the sensor.

2.3.7 Sorting Servo

The project is equipped with a micro servomotor that is coupled to an arm, which allows for

the channelling of the direction of the pepper on the conveyor belt. The servomotor has a

maximum range of pi-radians or 180 degrees (0-179 to be accurate), as such it has been

programmed to throttle somewhere between the lower and upper limit angles. Since this

now becomes the origin, the servo can rapidly switch between a negative displacement, i.e.

rotate negative 90 degrees (half-pi radians) or positive displacement of positive 90 degrees.

This allows the system to be aware of the angle, which the arm is extended toward, and as

6such, the arm acts as a guide to deposit the scanned pepper into its respective bins. There

are two possible bins in this implementation, however more can be added with increased

complexity whilst needing greater accuracy and tuning in the components.

MENG3011 MECHATRONICS PROJECT

12 | P a g e

3 DESIGN EVALUATION

Table 2 to table 4 show an evaluation of each design element and the scale used. In general all

design element were able to perform at 80% or greater.

Table 2: Evaluation of each feature of the device.

Design Element Assessment Comment
Dispenser Successful –

Works Reliably
Dispenser was implemented fully and
functioned as intended (90% reliable in trials).

Conveyor Belt Successful –
Works Reliably

Conveyor was implemented fully and
functioned as intended (>90% reliable in trials).

Automated Counting Successful –
Works Reliably

A measurement system using the ultrasonic
transducer was successfully implemented and
works as intended with little to no
failures/errors. (>90% reliable in trials).

Automated Stops Successful –
Somewhat
Reliable

Using the ultrasonic transducer to issue stops
based on positions, the conveyor belt was
successfully stopped but is reliable sometimes.
(>80% of trials).

Colour Sorting Successful –
Somewhat
Reliable

The colours sorting algorithm was
implemented but due to issues in the hardware
received and the need for constant
recalibration, the measurements are
unreliable. Suggestion: May be improved by
using a CMOS Imaging Sensor/Camera unit.

Weight Measurement Implemented –
Somewhat
Reliable

The load sensors were implemented as
expected but due to the sensors being half
sensors (quarter of an H-bridge), readings are
quite unreliable due to rapid fluctuations. With
smoothing of the data implemented (using
hardware smoothing), the data points fluctuate
less but the sensitivity is reduced significantly.

Sorting Arm Successful –
Works Reliably

The sorting arm was implemented successfully
and functioned in its task reliably (>90%
reliable in trials).

Table 3: Reliability Scale (modified from Likert Scale)

Unreliable Somewhat Unreliable Reliable Somewhat Reliable Works Reliably

<=60% >60% >70% >80% >90%

MENG3011 MECHATRONICS PROJECT

13 | P a g e

Table 4: Assessment Categories

Successfully Implemented Implemented Not Implemented

Feature was fully
implemented and
operational.

Feature was implemented,
partially implemented and
operational or partially
operational.

Feature was not Implemented
or was Implemented but not
used.

MENG3011 MECHATRONICS PROJECT

14 | P a g e

4 PARTS LIST
Table 5: Showing a partial, basic list of components used, sorted by functional elements.

Category Part Quantity

Output Display LCD Board 1
Audio Output

Device
Buzzer 1

Manual Data
Input

Keypad (16 keys) 1

Sensor Input

Ultrasonic Transducer 1
Colour Sensor 1

Load Cell 2

Encoder (on servo) 1

Actuators,
Mechanisms,

Hardware

Small DC motor (reversible) 2
Medium DC motor (reversible) 1

Small Servo Motor with arm attachment 1

Conveyor Belt (on one active roller, one passive roller
and two support rollers)

1

Logic, Processing,
Control

Closed-loop feedback control 1

Menu System (for interactive input of parameters) 1

Misc. PVC and fittings -

Table 6: Showing details of specialized components in the build.

Part Description Model No. Vendor Price

Ultrasonic
Transducer

A range finding sensor, which uses
emits and detects ultrasonic sound
waves.

HC-SR04 Amazon 8.99 USD

Colour
Sensor

An optoelectronic specialized
photocell, which detects red, green
and blue (RGB) channels of light.

TCS-3200 Dfrobot
Electronics

8.99 USD

Load Cell A quarter of an H-bridge setup, this
cell measures the force or weight
exerted on its surface.

SEN-10245 Sparkfun
Electronics

9.95 USD

Load Cell
Amplifier

A breakout board, which increases
the accuracy of the resistance,
changes of a load cell. Requires a
Full Sized Load Cell or a pair of
Partial Load Cells.

SEN-13230
HX711

Sparkfun
Electronics

9.95 USD

MENG3011 MECHATRONICS PROJECT

15 | P a g e

5 CHALLENGES

The project was split into three general phases, each of which possessed its own set of

difficulties:

1) Planning and Procurement

2) Build

3) Testing

During planning and procurement, despite ordering equipment as early as possible, the

supplier found it necessary to delay the shipment by as much as a month due to two factors:

firstly, lack of stock for one component and secondly for security issues involved in the

logistics of specialized pieces of electronic equipment destined for outside the United States.

During the build stage, the dispenser design was debated a number of times and went

through a number of concepts, each one had to be redesigned at some point. This was because

they often dispensed more items than necessary, or the delay between dispenses were too vast.

Another issue with the dispenser was that of the ability for the aperture to be able to account

for the large variations in shape and sizes of the items. This was solved by limiting the aperture

size to an estimated value of the quantity, which were possessed just before the time of testing.

Additionally, suspending the dispenser over the conveyor allowed the excesses in sizes not

accounted for to slip through the base slot. In the cases where the peppers would become stuck,

an agitator was created to actuate a rapid shake, which would be controlled by the logic circuit

to not allow the agitator to operate when a single item was already present on the conveyor.

Due to the small length of the conveyor, the dispenser was limited to one per cycle with stops

occurring when an item arrived at a desired checkpoint. If the conveyor was larger, it could

have been possible to have the rate increased with a continuous process.

During the test stage, there were issues in getting many of the sensors to operate with

their associated code including examples provided. This provided a bit of a delay with which

made it difficult to assess the reliability and limitations of each sensor individually. As such,

of the three colour sensors received, one was found to output values which did not correlate to

actual RGB coordinates of a RGB colour chart. While the remaining two colour sensors did

give much more accurate ranges (not necessarily values), their ability to supply repeatable

reliable readings were questionable at most. This was found to be due to lighting present and

the displacement of the sensor to the surface under measurement. Larger displacements allowed

MENG3011 MECHATRONICS PROJECT

16 | P a g e

better lighting from the source white LEDs but decreased the ability of the surface to be

detected by the optical cavity, whilst the shorter displacements tended to provide better ranges

of value but decreasing the actual accuracy of the colour detected as the surface would be

washed out by the incident white light. To solve this problem, a sufficient distance was

determined which balanced either problem and the code written was set for an inequality

comparison, that is, using greater than or less than compares. Another problem encountered

was that the sensor output was greatly influence by the ambient light intensity. This cause the

sensor to become uncalibrated when the ambient light intensity increases or decreases

significantly. This in turn causes the machine to fluctuate in terms of its sorting accuracy. No

reasonable solution was found for this problem.

Additionally, there was a problem encountered with the load cells. During procurement,

it was not specified at the manufacturer’s end that the system was only part of a full cell. As

such, it was attempted to reengineer the remainder of the full H-bridge setup by matching the

resistance values required. However, this introduced a lot of swings in the measurement

especially noise most often swung by micro fluctuations in temperature. When attempting to

reduce this noise by filtering, the issue which arose was that the accuracy was greatly affected.

However, the sensors underwent an attempted calibration, and the smallest unit of measure

possible was 1lb in step of 1lb.

The final issue which was encountered was that of dispensed peppers not being near

the sensors. To solve this issue, a pair of ‘funnelling’ partitions were shaped and suspended

over the conveyor.

MENG3011 MECHATRONICS PROJECT

17 | P a g e

6 Works Cited

Encyclopaedia Britannica. (2015, October 29). Coloration - Biology. Retrieved

April 12, 2016, from Encyclopaedia Britannica:

http://www.britannica.com/science/coloration-biology

MENG3011 MECHATRONICS PROJECT

18 | P a g e

7 APPENDIX A

Figure 3: Fritzing Diagram of the Circuit Used, not including Motor Control

MENG3011 MECHATRONICS PROJECT

19 | P a g e

8 APPENDIX B

 1 //Title: Pepper Sorting Machine Program Code

 2 //

 3 //Load external libraries

 4 #include <LiquidCrystal.h>

 5 #include <LCDKeypad.h>

 6 #include <Keypad.h>

 7 #include <HX711.h>

 8 #include <SignalFilter.h>

 9 #include <Servo.h>

 10

 11 //Load local libraries

 12 #include "pitches.h"

 13 #include "config.h"

 14

 15

 16 /* ----------- Initialise System ----------------*/

 17 void setup() {

 18 // Initialize the LCD

 19 lcd.begin(16, 2);

 20 Serial.begin(115200);

 21

 22 pinMode(BELTMOTOR, OUTPUT);

 23 pinMode(DISPENSERMOTOR, OUTPUT);

 24 pinMode(BUZZER, OUTPUT);

 25

 26 //initialize servo

 27 selectionServo.attach(SERVO);

 28 selectionServo.write(80);

 29

 30 //Show Software welcome message

 31 lcd.print("PEPPER SORTING");

 32 lcd.setCursor(0, 1);

 33 lcd.print("MACHINE V1.0");

 34

 35 //initialize scale and color sensor

 36 scaleSetup();

 37 colorSetup();

 38 delay(1500);

 39 }

 40

 41

 42 /* ----------- Main Loop ----------------*/

 43 void loop() {

 44

 45 keypadCheck(); //Run Keypad control function

 46 lcdInputCheck(); //Run LCD menu keys control function

 47 mainDisplay(); //Run LCD display control function

 48 controlLogic(); //Run Main Sorting Control logic

 49

 50 //Send debug data to serial

 51 if (systemState.debug) {

 52 Serial.println();

 53 Serial.print("Distance:");

 54 Serial.println(Ultrasonic_GetDist(TRIGGER, ECHO));

 55 colorSerialOut();

 56 scaleCheck();

 57 }

 58 }

 59

 60

 61 /*------ LCD display control function -----*/

 62 void mainDisplay() {

 63

 64 if (menuValue == '.')

 65 {

 66 if (millis() - timer.t1 >= 4000)

 67 {//Display state control timer

 68 timer.t1 = millis();

 69 systemState.displayFlip = !systemState.displayFlip;

 70 }

 71

 72 if (systemState.displayFlip)

MENG3011 MECHATRONICS PROJECT

20 | P a g e

 73 { //If LCD display is in state one

 74

 75 //Read and filter load cell values for green and red peppers

 76 ripePepper.curWeight = Filter.run(scale.get_units()); // Ripe pepper

 77 greenPepper.curWeight = Filter1.run(scale1.get_units()); // Green pepper

 78

 79 //Format LCD display to show Pepper Weight values

 80 lcdWrite(0, 0, "Pepper Weight", true);

 81 lcdWrite(1, 0, "R:", false);

 82 lcdWrite(1, 2, (String)ripePepper.curWeight, false);

 83 lcdWrite(1, 5, "lb| ", false);

 84 lcdWrite(1, 9, "G:", false);

 85 lcdWrite(1, 11, (String)greenPepper.curWeight, false);

 86 lcdWrite(1, 14, "lb", false);

 87 }

 88

 89

 90 if (!systemState.displayFlip)

 91 { //If LCD display is in state two

 92

 93 // Delay to reduce lcd flickering

 94 delay(20);

 95

 96 //Format LCD display to show pepper quantity

 97 lcdWrite(0, 0, "Pepper Quantity", true);

 98 lcdWrite(1, 0, "R:", false);

 99 lcdWrite(1, 2, (String)ripePepper.curQuantity, false);

100 lcdWrite(1, 6, " | ", false);

101 lcdWrite(1, 9, "G:", false);

102 lcdWrite(1, 11, (String)greenPepper.curQuantity, false);

103

104 }

105 }

106 }

107

108

109 /*------- Main sorting control logic -----------*/

110 void controlLogic() {

111

112 //Initialize local variables

113 static int counter1;

114 const int pulse0 = 20;

115 const int delay1 = 300;

116 const byte distance = 10;

117

118

119 if (systemState.systemON)

120 { //If user turn on the machine

121

122 //Read ultrasonic sensor

123 int detect = Ultrasonic_GetDist(TRIGGER, ECHO);

124

125 //-----Pepper detection logic------//

126 if (detect < distance && systemState.dispenserON && systemState.conveyorON)

127 { //If the sensor detects a pepper and the dispenser and conveyor are ON

128

129 //Turn off the dispenser motor

130 digitalWrite(DISPENSERMOTOR, LOW);

131

132 //Increment items detected counter

133 counter1 += 1;

134 Serial.println();

135 Serial.print("Pepper detected: ");

136 Serial.println(counter1);

137

138 //Delay to allow pepper to pass ultrasonic sensor

139 delay(delay1);

140

141 //Turn off conveyor

142 digitalWrite(BELTMOTOR, LOW);

143

144 //Read and discard color sensor values

145 colorSerialOut();

146 colorSerialOut();

147

148 //Pulse conveyor and Sample the pepper color

149 samplePepperColor(pulse0);

MENG3011 MECHATRONICS PROJECT

21 | P a g e

150 samplePepperColor(pulse0);

151

152 //Change system state variables

153 systemState.conveyorON = false;

154 systemState.dispenserON = false;

155 Serial.println("Conveyor OFF");

156 Serial.println("dispenser OFF");

157

158 //Turn off color sensor LED

159 digitalWrite(LED, LOW);

160

161

162 } else if (detect < distance && systemState.conveyorON ||

163 detect < distance && systemState.dispenserON)

164 { //If pepper is detected and conveyor or dispenser is ON

165

166 //Increment items detected counter

167 counter1 += 1;

168 Serial.println();

169 Serial.print("Pepper detected 2: ");

170 Serial.println(counter1);

171

172 //Delay to allow pepper to pass ultrasonic sensor

173 delay(delay1);

174

175 //Pulse conveyor and Sample the pepper color

176 samplePepperColor(pulse0);

177 samplePepperColor(pulse0);

178

179 //Change system state variable

180 systemState.conveyorON = false;

181 }

182

183 //-----Pepper Selection logic-------//

184 if (!systemState.conveyorON)

185 { //If the conveyor is OFF

186

187 if (color.red > color.green && color.red > color.blue)

188 { //If red is the dominant color

189

190 //Set color selection state to 1

191 Serial.println("Pepper is Red.");

192 color.selection = 1;

193

194 } else if (color.green > color.blue && color.green > color.red)

195 { //If green is the dominant color

196

197 //Set color selection state to 2

198 Serial.println("Pepper is Green.");

199 color.selection = 2;

200

201 } else if (color.red != 0 && color.green != 0 && color.blue != 0)

202 { //If color is indeterminate

203

204 //Reset color selection state

205 color.selection = 0;

206

207 //Pulse conveyor and resample pepper color

208 samplePepperColor(pulse0);

209 }

210

211 //Run red and green pepper sorting functions

212 selectRedPepper();

213 selectGreenPepper();

214 }

215

216 //dispenser Control timer

217 if (millis() - timer.t2 >= 1000 && !systemState.dispenserON)

218 { //If time out interval and dispenser is OFF

219

220 //Reset timer

221 timer.t2 = millis();

222

223 //Turn on dispenser

224 digitalWrite(DISPENSERMOTOR, HIGH);

225

226 //Change system state

MENG3011 MECHATRONICS PROJECT

22 | P a g e

227 systemState.dispenserON = true;

228 Serial.println("dispenser ON");

229

230 //Reset selection servo

231 servoTurn(selectionServo, 80, 1);

232 //Turn off color sensor led

233 digitalWrite(LED, LOW);

234 delay(200);

235 }

236

237 //Run Capacity logic

238 checkMenuSettings();

239 } else {

240 stopSorter();

241 }

242 }

243

244

245 /* Pulse and Sample color function */

246 void samplePepperColor(int pulse0)

247 {

248 digitalWrite(BELTMOTOR, HIGH);

249 delay(pulse0);

250 digitalWrite(BELTMOTOR, LOW);

251 colorSerialOut();

252 colorSerialOut();

253 Serial.print("White: ");

254 Serial.println(countW);

255 timer.t2 = millis();

256 }

257

258

259 /* Green pepper sorting function */

260 void selectGreenPepper() {

261 if (color.selection == 1 && !systemState.conveyorON)

262 { //If a ripe pepper was dectected and conveyor is OFF

263

264 //Reset selection and color values

265 color.selection = 0;

266 color.red, color.green, color.blue = 0;

267 //Increment ripe pepper quantity

268 ripePepper.curQuantity += 1;

269 //Active selection servo to direct pepper to

270 //red pepper bin

271 servoTurn(selectionServo, 125, 0);

272 delay(200);

273

274 //Turn on conveyor and change system state

275 digitalWrite(BELTMOTOR, HIGH);

276 systemState.conveyorON = true;

277 Serial.println("Conveyor ON");

278 Serial.print("Ripe Pepper selected: ");

279 Serial.println(ripePepper.curQuantity);

280 //Reset timer

281 timer.t2 = millis();

282 }

283 }

284

285

286 /* Red pepper sorting function */

287 void selectRedPepper() {

288 if (color.selection == 2 && !systemState.conveyorON)//

289 { //Green pepper

290

291 color.selection = 0;

292 color.red, color.green, color.blue = 0;

293 greenPepper.curQuantity += 1;

294 servoTurn(selectionServo, 45, 0);

295 delay(200);

296

297 digitalWrite(BELTMOTOR, HIGH);

298 systemState.conveyorON = true;

299 Serial.println("Conveyor ON");

300 Serial.print("Green Pepper selected: ");

301 Serial.println(greenPepper.curQuantity);

302 timer.t2 = millis();

303 }

MENG3011 MECHATRONICS PROJECT

23 | P a g e

304 }

305

306

307 /*---------- Capacity Logic -----------*/

308 void checkMenuSettings() {

309 if (ripePepper.weight > 0 && systemState.conveyorON)

310 {//If value was set for red pepper weight and conveyor is ON

311 if (ripePepper.curWeight >= ripePepper.weight)

312 {//If Ripe pepper target weight is reach

313

314 playSong();

315 delay(500);

316 stopSorter();

317 }

318 }

319

320 if (greenPepper.weight > 0 && systemState.conveyorON)

321 {//If value was set for green pepper weight and conveyor is ON

322 if (greenPepper.curWeight >= greenPepper.weight)

323 {//If Green pepper target weight is reach

324

325 playSong();

326 delay(500);

327 stopSorter();

328 }

329 }

330

331 if (ripePepper.quantity > 0 && systemState.conveyorON)

332 {//If value was set for ripe pepper quantity and conveyor is ON

333 if (ripePepper.curQuantity >= ripePepper.quantity)

334 {//If Ripe pepper target quantity is reach

335

336 playSong();

337 delay(500);

338 stopSorter();

339 }

340 }

341

342 if (greenPepper.quantity > 0 && systemState.conveyorON)

343 {//If value was set for green pepper quantity and conveyor is ON

344 if (greenPepper.curQuantity >= greenPepper.quantity)

345 {//If Green pepper target quantity reach

346

347 playSong();

348 delay(500);

349 stopSorter();

350 }

351 }

352 }

353

354

355 /* Machine Stop function*/

356 void stopSorter() {

357 digitalWrite(BELTMOTOR, LOW);

358 digitalWrite(DISPENSERMOTOR, LOW);

359 systemState.conveyorON = false;

360 systemState.dispenserON = false;

361 systemState.systemON = false;

362 }

363

364

365 /* Servo turning function */

366 void servoTurn(Servo servo, int angle, int rate) {

367 if (servo.read() <= angle) {

368 for (int i = servo.read(); i <= angle; i++) { // turn the servo forward

369 servo.write(i); // turn 1 degree per rate(ms)

370 delay(rate); // delay time control turning speed

371 }

372 }

373 else {

374 for (int i = servo.read(); i >= angle; i--) { // turn the servo backwards

375 servo.write(i);

376 delay(rate); // control turning speed

377 }

378 }

379 }

380

MENG3011 MECHATRONICS PROJECT

24 | P a g e

381

382 /* Shutdown melody function */

383 void playSong() {

384

385 for (int thisNote = 0; thisNote < 8; thisNote++) {

386 int noteDuration = 1000 / noteDurations[thisNote];

387 tone(BUZZER, melody[thisNote], noteDuration);

388

389 int pauseBetweenNotes = noteDuration * 1.30;

390 delay(pauseBetweenNotes);

391

392 noTone(BUZZER);

393 }

394 }

395

396

397 /* Load Sensor/Scale setup function */

398 void scaleSetup() {

399

400 //Initialise noise filters

401 Filter.begin();

402 Filter.setFilter('b');

403 Filter.setOrder(1);

404

405 Filter1.begin();

406 Filter1.setFilter('b');

407 Filter1.setOrder(1);

408

409 //Set A channel

410 scale.set_gain(64);

411 scale1.set_gain(64);

412

413 //Reset the scale to 0

414 scale.set_scale();

415 scale.tare();

416 scale1.set_scale();

417 scale1.tare();

418

419 long zero_factor = scale.read_average(); //Get a baseline reading

420 Serial.print("Zero factor: ");

421 Serial.println(zero_factor);

422 scale.set_scale(calibration_factor);

423 scale1.set_scale(calibration_factor);

424 scale.tare();

425 }

426

427

428 /* Scale calibration function */

429 void scaleCheck() {

430

431 //Adjust to this calibration factor

432 scale.set_scale(calibration_factor);

433 scale1.set_scale(calibration_factor);

434

435 Serial.print("Scale Reading: ");

436 float value = scale.read_average(2);

437 Serial.print(value, 1);

438 //Serial.print(" lbs");

439 Serial.print(" calibration_factor: ");

440 Serial.print(calibration_factor);

441 Serial.println();

442

443 Serial.print("Scale0 reading:\t");

444 value = Filter.run(scale.get_units());

445 //Serial.print(value, 2);

446 Serial.print(scale.get_units(), 2);

447

448 Serial.print("\t| Scale1 reading:\t");

449 value = Filter.run(scale1.get_units());

450 //Serial.println(value, 2);

451 Serial.println(scale1.get_units(), 2);

452

453 if (Serial.available() > 0)

454 {

455 char temp = Serial.read();

456 if (temp == '+' || temp == 'a')

457 calibration_factor += 2;

MENG3011 MECHATRONICS PROJECT

25 | P a g e

458 else if (temp == '-' || temp == 'z')

459 calibration_factor -= 2;

460 }

461 }

462

463

464 /* Ultrasonic measurement function */

465 double Ultrasonic_GetDist(byte triggerPin, byte echoPin)

466 {

467 long duration, inches, cm;

468 double m;

469 cm = 0;

470

471 pinMode(echoPin, INPUT);

472 pinMode(triggerPin, OUTPUT);

473

474 digitalWrite(triggerPin, LOW);

475 delayMicroseconds(2);

476 digitalWrite(triggerPin, HIGH);

477 delayMicroseconds(10);

478 digitalWrite(triggerPin, LOW);

479

480 duration = pulseIn(echoPin, HIGH, 38000);

481

482 if (duration != 0) {

483 // convert the time into a distance

484 cm = microsecondsToCentimeters(duration);

485 }

486

487 return cm;

488 }

489

490

491 long microsecondsToCentimeters(long microseconds)

492 {

493 return (microseconds / 29 / 2);

494 }

495

496

497 /*------- keypad Control and menu display function ----------*/

498 void keypadCheck()

499 {

500 char key = kpd.getKey();

501 const int time = 1500;

502 if (key) // Check for a valid key.

503 {

504 switch (key)

505 {

506 case '*': //Clear input Value

507 if (menuValue == 'A' || menuValue == 'B' ||

508 menuValue == 'C' || menuValue == 'D') {

509 pos = 0;

510 lcd.clear();

511 lcd.setCursor(0, 0);

512 lcd.print("Enter new Value:");

513

514 memset(inputValue, 0, sizeof(inputValue));

515 }

516 break;

517

518 case '#': // Enter key

519 if (menuValue == 'A' || menuValue == 'B' ||

520 menuValue == 'C' || menuValue == 'D') {

521 switch (menuValue) {

522 case 'A': //

523 greenPepper.quantity = 0;

524 greenPepper.weight = 0;

525 greenPepper.quantity = atoi(inputValue);

526

527 lcdWrite(0, 0, "Value Saved", true);

528 lcdWrite(1, 0, (String)greenPepper.quantity, false);

529 menuValue = '.';

530 delay(time);

531 break;

532

533 case 'B': //

534 ripePepper.quantity = 0;

MENG3011 MECHATRONICS PROJECT

26 | P a g e

535 ripePepper.weight = 0;

536 ripePepper.quantity = atoi(inputValue);

537

538 lcdWrite(0, 0, "Value Saved", true);

539 lcdWrite(1, 0, (String)ripePepper.quantity, false);

540 menuValue = '.';

541 delay(time);

542 break;

543

544 case 'C': //

545 greenPepper.weight = 0;

546 greenPepper.quantity = 0;

547 greenPepper.weight = atoi(inputValue);

548

549 lcdWrite(0, 0, "Value Saved", true);

550 lcdWrite(1, 0, (String)greenPepper.weight, false);

551 menuValue = '.';

552 delay(time);

553 break;

554

555 case 'D': //

556 ripePepper.weight = 0;

557 ripePepper.quantity = 0;

558 ripePepper.weight = atoi(inputValue);

559

560 lcdWrite(0, 0, "Value Saved", true);

561 lcdWrite(1, 0, (String)ripePepper.weight, false);

562 menuValue = '.';

563 delay(time);

564 break;

565

566 default:

567 pos = 0;

568 break;

569 }

570 break;

571 }

572 break;

573

574 case 'A': // Set green pepper quantity menu

575 menuValue = key;

576 pos = 0;

577 lcdWrite(0, 0, "Green Pepper", true);

578 lcdWrite(1, 0, "Quantity Menu", false);

579 delay(time);

580 lcdWrite(0, 0, "Enter Quantity:", true);

581

582 memset(inputValue, 0, sizeof(inputValue));

583 break;

584

585 case 'B': // Set ripe pepper quantity menu

586 menuValue = key;

587 pos = 0;

588 lcdWrite(0, 0, "Ripe Pepper", true);

589 lcdWrite(1, 0, "Quantity Menu", false);

590 delay(time);

591 lcdWrite(0, 0, "Enter Quantity:", true);

592

593 memset(inputValue, 0, sizeof(inputValue));

594 break;

595

596 case 'C': // Set green pepper weight menu

597 menuValue = key;

598 pos = 0;

599 lcdWrite(0, 0, "Green Pepper", true);

600 lcdWrite(1, 0, "Weight Menu", false);

601 delay(time);

602 lcdWrite(0, 0, "Enter Weight:", true);

603

604 memset(inputValue, 0, sizeof(inputValue));

605 break;

606

607 case 'D': // Set ripe pepper weight menu

608 menuValue = key;

609 pos = 0;

610 lcdWrite(0, 0, "Ripe Pepper", true);

611 lcdWrite(1, 0, "Weight Menu", false);

MENG3011 MECHATRONICS PROJECT

27 | P a g e

612 delay(time);

613 lcdWrite(0, 0, "Enter Weight:", true);

614

615 memset(inputValue, 0, sizeof(inputValue));

616 break;

617

618 default:

619 if (menuValue == 'A' || menuValue == 'B' ||

620 menuValue == 'C' || menuValue == 'D') {

621 inputValue[pos] = key;

622 lcd.setCursor(pos, 1);

623 lcd.print(inputValue[pos]);

624

625 if (pos < 2) {

626 pos ++;

627 }

628 } else menuValue = '.';

629 break;

630 }

631 }

632 }

633

634

635 /* Function to format LCD output */

636 void lcdWrite(byte row, byte col, String value, bool Clear) {

637 if (Clear)

638 lcd.clear();

639 lcd.setCursor(col, row);

640 lcd.print(value);

641 }

642

643

644 /*-------- LCD Menu key function -------------------*/

645 void lcdInputCheck()

646 {

647 adc_key_in = analogRead(0); // read the value from the sensor

648 key = get_key(adc_key_in); // convert into key press

649 if (key != oldkey) // if keypress is detected

650 {

651 delay(50); // wait for debounce time

652 adc_key_in = analogRead(0); // read the value from the sensor

653 key = get_key(adc_key_in); // convert into key press

654 if (key != oldkey)

655 {

656 oldkey = key;

657 if (key >= 0)

658 {

659 switch (key) {

660

661 case 1: // up key

662 break;

663

664 case 0: //right key

665 break;

666

667 case 2: //down key

668 //Turn ON/OFF system debug state

669 systemState.debug = !systemState.debug;

670 Serial.print("System Debug: ");

671 Serial.println(systemState.debug);

672 break;

673

674 case 3: // left key

675 //Reset Scale

676 scale.tare();

677 scale1.tare();

678 Serial.println("Scale Reset");

679 break;

680

681 case 4: // enter key

682 // Turn sorting machine ON/OFF

683 systemState.systemON = !systemState.systemON;

684

685 if (systemState.systemON)

686 {

687 digitalWrite(BELTMOTOR, HIGH);

688 digitalWrite(DISPENSERMOTOR, HIGH);

MENG3011 MECHATRONICS PROJECT

28 | P a g e

689 systemState.conveyorON = true;

690 systemState.dispenserON = true;

691

692 Serial.print("System State: ");

693 Serial.println((String)systemState.systemON);

694 }

695 break;

696

697 default:

698 Serial.println("Key not implemented");

699 break;

700

701 }

702 Serial.println(msgs[key]);

703 }

704 }

705

706 delay(60);

707 }

708 }

709

710

711 // Convert ADC value to key number

712 int get_key(unsigned int input)

713 {

714 int k;

715 for (k = 0; k < NUM_KEYS; k++)

716 {

717 if (input < adc_key_val[k])

718 {

719 return k;

720 }

721 }

722 if (k >= NUM_KEYS)k = -1; // No valid key pressed

723 return k;

724 }

725

726

727 /* Color sensor setup fuction */

728 void colorSetup()

729 {

730 pinMode(s0, OUTPUT);

731 pinMode(s1, OUTPUT);

732 pinMode(s2, OUTPUT);

733 pinMode(s3, OUTPUT);

734 pinMode(LED, OUTPUT);

735

736 //Color calibration values

737 colorCal.red = 27; // 29, 21, 20, 40

738 colorCal.green = 21; // 23, 16, 27

739 colorCal.blue = 22; // 25, 17, 28

740 //white 24, 16, 22

741 }

742

743

744 /* Color counter function */

745 void ISR_INTO()

746 {

747 counter++;

748 }

749

750

751 /* Color timer function */

752 void timer2_init(void)

753 {

754 TCCR2A = 0x00;

755 TCCR2B = 0x07; //the clock frequency source 1024 points

756 TCNT2 = 100; //10 ms overflow again

757 TIMSK2 = 0x01; //allow interrupt

758 }

759

760

761 /* Color capture function*/

762 void getColor()

763 {

764 digitalWrite(s1, HIGH);

765 digitalWrite(s0, LOW); //LOW

MENG3011 MECHATRONICS PROJECT

29 | P a g e

766 flag = 0;

767 attachInterrupt(0, ISR_INTO, CHANGE);

768 timer2_init();

769 }

770

771 int i = 0;

772

773

774 /* Color sensor Interupt Service Routine */

775 ISR(TIMER2_OVF_vect)

776 { //the timer 2, 10ms interrupt overflow again.

777 //Internal overflow interrupt executive function

778

779 TCNT2 = 100;

780 flag++;

781 if (flag == 1)

782 {

783 counter = 0;

784

785 }

786 else if (flag == 2)

787 { //Red sensor

788 digitalWrite(LED, HIGH);

789 digitalWrite(s2, LOW);

790 digitalWrite(s3, LOW);

791 countR = counter;

792 digitalWrite(s2, HIGH);

793 digitalWrite(s3, HIGH);

794 }

795 else if (flag == 3)

796 { //Green sensor

797 countG = counter;

798 digitalWrite(s2, LOW);

799 digitalWrite(s3, HIGH);

800 }

801 else if (flag == 4)

802 { //Blue sensor

803 countB = counter;

804 digitalWrite(s2, HIGH);

805 digitalWrite(s3, HIGH);

806 }

807 else

808 { //White sensor

809 countW = counter;

810 digitalWrite(s2, LOW);

811 digitalWrite(s3, LOW);

812 flag = 0;

813 TIMSK2 = 0x00;

814 }

815 counter = 0;

816 delay(2);

817 }

818

819

820 /* Serial Color printing function */

821 void colorSerialOut()

822 {

823 delay(100);

824 getColor();

825 caliberateColor();

826

827 Serial.print("Color:,");

828 Serial.print(color.red);

829 Serial.print(',');

830 Serial.print(color.green);

831 Serial.print(',');

832 Serial.println(color.blue);

833 }

834

835

836 /* Color values caliberation function */

837 void caliberateColor()

838 {

839 if (systemState.debug)

840 {

841 Serial.print("Red: ");

842 Serial.println(countR);

MENG3011 MECHATRONICS PROJECT

30 | P a g e

843 Serial.print("Green: ");

844 Serial.println(countG);

845 Serial.print("Blue: ");

846 Serial.println(countB);

847 //Serial.print("White: ");

848 //Serial.println(countW);

849 }

850

851 color.red = constrain(map(countR, 6, colorCal.red, 0, 255), 0, 255);

852 color.green = constrain(map(countG, 4, colorCal.green, 0, 255), 0, 255);

853 color.blue = constrain(map(countB, 4, colorCal.blue, 0, 255), 0, 255);

854

855 }

856

857 //

858 // File: config.h

859 //

860 /* System Configuration and Global variables */

861

862 //Mega pin assignment

863 #define DOUT 53

864 #define CLK 52

865 #define DOUT1 50

866 #define CLK1 51

867 #define TRIGGER 35

868 #define ECHO 36

869

870 #define BELTMOTOR 37

871 #define DISPENSERMOTOR 38

872 #define SERVO 39

873

874 #define BUZZER 40

875

876 /* Custom type definition */

877 struct pepper_t {

878 int quantity = 0, weight = 0,

879 curQuantity = 0, curWeight = 0;

880 };

881

882 struct color_t {

883 int white = 0, red = 0,

884 blue = 0, green = 0,

885 selection;

886 };

887

888 struct systemState_t {

889 bool conveyorON = false,

890 dispenserON = false,

891 debug = false,

892 systemON = false,

893 displayFlip = false;

894

895 } systemState;

896

897 struct timer_t {

898 unsigned long t1 = 0, t2 = 0, t3 = 0;

899 } timer;

900 /*--------------*/

901

902

903 // custom pepper type

904 pepper_t greenPepper;

905 pepper_t ripePepper;

906

907 // custom color type

908 color_t color;

909 color_t colorCal;

910

911 //Noise filter

912 SignalFilter Filter;

913 SignalFilter Filter1;

914

915 //Load cell control board

916 HX711 scale(DOUT, CLK);

917 HX711 scale1(DOUT1, CLK1);

918

919 float calibration_factor = -12339;

MENG3011 MECHATRONICS PROJECT

31 | P a g e

920 Servo selectionServo;

921 Servo conveyor;

922

923 // notes in the melody:

924 int melody[] = {

925 NOTE_C4, NOTE_G3, NOTE_G3, NOTE_A3, NOTE_G3, 0, NOTE_B3, NOTE_C4

926 };

927

928 int noteDurations[] = {

929 4, 8, 8, 4, 4, 4, 4, 4

930 };

931

932 /*--------- Color Sensor variables ---------------*/

933 const int s0 = 30;

934 const int s1 = 31;

935

936 const int taosOutPin = 2;

937 const int s2 = 32;

938 const int s3 = 33;

939 const int LED = 34;

940

941 int flag = 0;

942 int counter = 0;

943 int countR = 0, countG = 0, countB = 0, countW = 0;

944

945 /*---------- LCD Key variables --------------*/

946 char msgs[5][16] = {

947 'Right Key OK ',

948 'Up Key OK ',

949 'Down Key OK ',

950 'Left Key OK ',

951 'Select Key OK'

952 };

953

954 int adc_key_val[5] = {

955 50, 200, 400, 600, 800

956 };

957

958 int NUM_KEYS = 5;

959 int adc_key_in;

960 int key = -1;

961 int oldkey = -1;

962

963

964 /*---------- Keypad variables ----------- */

965 char inputValue[3];

966 byte multipler[3] = {100, 10, 1};

967 char menuValue = '.';

968 int pos = 0;

969 const byte ROWS = 4; // Four rows

970 const byte COLS = 4; // Four columns

971

972 // Define the Keymap

973 char keys[ROWS][COLS] = {

974 {'1', '2', '3', 'A'},

975 {'4', '5', '6', 'B'},

976 {'7', '8', '9', 'C'},

977 {'*', '0', '#', 'D'}

978 };

979

980 // keypad ROW0, ROW1, ROW2 and ROW3 Arduino pins configuration.

981 byte rowPins[ROWS] = { 22, 23, 24, 25 };

982

983 // keypad COL0, COL1, COL2 and COL33 Arduino pins configuration.

984 byte colPins[COLS] = { 26, 27, 28, 29 };

985

986 Keypad kpd = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

987 /*-------------------------------------*/

988

989 // LCD Arduino pins configuration

990 LiquidCrystal lcd(8, 13, 9, 4, 5, 6, 7);

991

	1 DESIGN SUMMARY
	2 SYSTEM DETAILS
	2.1 Process flow
	2.2 System design
	2.3 Main Components
	2.3.1 LCD Display
	2.3.2 Load Sensor
	2.3.3 Arduino Mega
	2.3.4 Keypad
	2.3.5 Colour sensor
	2.3.6 Proximity Sensor
	2.3.7 Sorting Servo

	3 DESIGN EVALUATION
	4 PARTS LIST
	5 CHALLENGES
	6 Works Cited
	7 APPENDIX A
	8 APPENDIX B

