
1.0 The System Architecture and Design Features

Figure 1. System Architecture

The overall guiding design philosophy behind the Data Capture and Logging

System Architecture is to have a clean design that presents the system user with

a simple, intuitive User Interface with fully integrated functionality synchronized

across three domains/components. It must only allow for simple user and system

inputs/outputs whilst hiding and automating complex system interactions.

Figure 1 shows a flow chart of the components that make up the Data Capture

and Logging system. The components are as follows:

1. The Fatigue Tester Data Logging Software - This custom made application

resides on a desktop computer and communicates with the next component

(the Data Capture Unit) via a RS-232 (Serial) connection. It functions as:

a) A semi-automatic data logger,

b) A post processor of the data,

c) A remote Controller of the Data Capture Unit.

It allows the user to view live data in a table format or as a graph. Furthermore,

it facilitates the exporting of the data:

d) As a CSV file, an Excel compatible format,

e) As an SVG image file or

f) As a PDF file.

2. The Data Capture Unit (DCU) - This custom made hardware consist of

several components which enables the:

a) Capturing of data from the Fatigue Testing Machine.

b) Unit to function as a Digital counter and timer. The following data is locally

displayed by the counter feature:

i. Total cycle Count,

ii. Motor speed in hertz (Hz),

iii. Input load in Newtons (N),

iv. Test complete time,

v. Important changes in system state.

c) Remote displaying of the above data via the Data Logging Software.

d) Local and remote control of the Fatigue testing machine.

3. The Fatigue Testing Machine - This unit is the source of all test data.

1.1 The Fatigue Tester Data Logging Software

The Fatigue Tester Data Logging Software is a custom built desktop application.

This application was written using open source tools and libraries. There are a

total of 2,154 lines of code in this application. The development tools used to

create this application are Processing (both the programming language and

Integrated Development Environment); G4P GUI Builder

(http://www.lagers.org.uk/g4p/) was used to create the user interfaces and

gwoptics_p5lib (http://www.gwoptics.org/processing/gwoptics_p5lib/) was used to

create the 2D plots for the graphs. The final code was converted to Java and

compiled to run on the Java virtual machine. This makes the code for the

application portable across the Windows, Linux and Mac operating systems. Table

1 below shows the minimum system requirements for the application on windows.

Processing is a programming language based on Java developed at MIT. “Today,

there are tens of thousands of students, artists, designers, researchers, and

hobbyists who use Processing for learning, prototyping, and production”

(https://processing.org/). Appendix _ has a copy of the full Java source code that

includes all open source libraries used.

Table 1. Minimum system requirements

Operating System Windows 7 32bit

Processor Intel Celeron 1.2GHz

Ram 1Gb

Java Version 7 update 40 or higher

Disk space 1 GB

Drivers Arduino IDE 1.2 or above

1.11 Main GUI

The following is a detail description of the features and parts of the Fatigue Tester

Data Logging Software as referenced in figure 2 below:

1) Digital Counter Stats panel - This panel is a remote display of the

information which is displayed locally on the digital counter which is part of the

Data capture unit. It shows the:

a) Motor speed in hertz (Hz),

b) Total Cycle Count,

c) Time elapsed,

d) Specimen Load (See calibration and testing section for details).

2) Digital Counter Log panel - This panel is the main user interactive area of the

program. It consists of several sub-panels and a log view area which allows the

user to interact with the program by:

a) Viewing data in a table format,

b) Open, close, save or delete data log files,

c) Switch to the graph viewing interface,

d) Opening the log file directly in Excel for formatting, printing or any related

processing activity.

3) Load Conversion Tool panel - Figure 3 show the load conversion tool in detail.

The purpose of this tool is to allow the user to calculate the equivalent load on the

SM1090 Fatigue Tester for a given input load on the RR-2015 Data Capture Unit.

This can be used for calibration purposes and as an aid in determining the correct

load input necessary for regular testing operations.

Figure 2. Main Software GUI

Figure 3. Load Conversion Tool

4) Main Menu panel - This panel contains the main menu functions that the user

would need to interact with the program.

5) Settings panel - This panel provides the interface which allows the user to set

the program’s automatic data capture rate in seconds and select the graph type to

plot. User can select a minimum capture rate of two (2) seconds and a maximum

of sixty (60) seconds in steps of two (2) seconds. The systems has a rate

precision of plus or minus one (1) second. At the moment only the LN plot graph

type is implemented, but provision has been made for an S-N curve feature to be

implemented if necessary. The user can also select None as the graph type to

manually update the data log.

6) Specimen Properties panel - This panel allows the user to enter the

properties of the specimen being currently tested.

7) System Status panel - This panel displays the current status of the program. It

indicates whether there is a valid USB connection to the Data Capture Unit and

the serial port that is being used for communication. The user can use the Reset

USB button provided to reestablish a broken connection. It also shows the total

records in the log table as well as the current date as additional information.

1.12 Graph GUI

Figure 4 shows a screen shot of the Graph program interface. This interface

allows the user to view a live plot of the data whiles a test is in progress or a plot of

data previously recorded and saved. It consists of the following sections:

1) The General graph plot area - This is the area which displays the graph.

2) The Zoom Tool panel - This panel allows the user to zoom in and expand the

plot points displayed to view small details on the graph. The user can select the

following zoom options:

a) None - This option displays the all the data at once.

b) Beginning - This option displays the first half of the data set to the user.

c) Graph End - This option displays the second half of the data set to the

user.

After selecting one of the above options the user can then use the slider on

the tool to increase or decrease the range of data to be viewed.

3) The Graph menu panel - This panel contains the main menu functions which

allows the user to:

a) Save the graph as a PDF or SVG file,

b) Open a saved log file to graph its contents,

c) Navigate back to the Main GUI.

Figure 4. Graph GUI

1.13 The Control Panel

The Control Panel is the interface which allows the user to remotely control the

Data Capture Unit. Figure 5 shows a screen shot of the window. Its exist as a

separate window in the Main application and has the following features:

1) Start Test Button - This button allows for the remote starting of the fatigue

tester via the computer.

2) Abort Test Button - This button allows the user to remotely abort a test in

progress.

3) System Log - This provides information as to the state of the Data capture unit

as well as that of the Data logging software. This information is useful for

debugging operational errors that may present themselves during the use of the

system.

4) Reset Button - This button allows the user to remotely reset the Data Capture

Unit in case of operational errors.

Figure 5. The Control Panel

1.14 Internal Program Logic and Control

Figure 6. Application Flow Chart

Figure 6 shows a flow chart that is a simplified representation of how the

application’s internal logic and control was designed. The application is designed

as a multi-threaded program. When the user starts the program its various

properties and graphic user interfaces (GUI) are initialized and a serial connection

is established between the application and the Data capture unit. If no connection

is made, the application continues to try until such connection is established.

Concurrent with the above process, the application also waits for the user to press

a menu button or make changes to settings. The user inputs/selections are then

processed and the required action/s are performed by the application.

Concurrently the application also reads any serial data received and process it

then performs the required actions automatically. If the user clicked a button on

the Control panel, the application sends the required command via the serial port

to the Arduino Uno in the DCU. The Uno process the command, performs the

actions, then send a status/state message back to the application. The application

process the resulting status message, then performs the required actions

automatically for the duration of a test. At the completion of a test the application

outputs a standard formatted log.csv file. The standard format is shown in Table 2

below.

Table 2. Standard Data output format

Time Specimen Properties Calculated Data RR-2015

Time Material
Description

Specimen
‘neck’
Diameter

Distance
from load
to neck ‘L’
(mm)

Second
Moment
of Area
(mm4)

Bending
Moment at
‘neck’(mm4)

Maximum
Bending
Stress
(Mpa)

Cycle
Rate
(HZ)

Total
cycle
Count

Specimen
load ‘F’ (N)

1.15 Application Usage Procedure

Before the user setup the Fatigue testing machine to begin testing they must

follow the following procedure to setup the Data logging application:

 Lunch the Fatigue Tester Data Logging Software from the desktop folder

where it saved.

 Click the New button on the Main menu panel to create a new log file then

choose the directory location on the computer where the file will be save from

the file dialog. Give the file a unique name then click Ok. You can also open

an existing file and overwrite its contents.

 Enter the Specimen Properties in the properties panel. These properties are

used to calculate addition data about the test specimen, so please ensure that

the information is correctly entered.

 Set logging parameters in settings. Determine the data capture rate and the

graph type you want to work with then select the appropriate option from the

lists provided.

 Ensure that the USB cable is connected to the computer and the Data

Capture Unit. Check the System status panel to ensure that a valid connection

exist. If it indicates that the USB is disconnected click the Reset USB button

and follow the instructions provided. Proceed to the next step upon

conformation of a positive status.

 Setup the Fatigue Testing machine. See Data Capture Unit setup procedure

for directions.

 Begin testing. Click the Start Test button on the Control panel or green button

on the Data Capture Unit.

 Click the Show Graph button on the Main menu panel to view graph.

After testing complete:

 Click the Save button to Save the log file.

 Click Open in Excel button to view log file in excel to format for printing.

 Click Save as picture or Save as PDF button to export the graph as a PDF or

SVG file. Figures 7, 8 & 9 shows sample outputs from the program.

 Restart the above steps from the beginning for next test.

Figure 7. An example of a picture output

Figure 8. An example of a PDF output

Figure 9. An example of a Spreadsheet/Excel

output

1.2 The Data Capture Unit

This is a custom built hardware consisting of several components as shown in

figure 10, 11 & 12 and detailed below. At the heart of the Unit is an Arduino Uno,

a popular prototyping platform. The Uno takes the ATmega328 Micro-controller

and its related properties and exposed them in an easy to use manner which

allows for the design and rapid prototyping of Mechatronics projects as well as

Instrumentation and Controls projects. Table 3 below shows a summery of the

Arduino Uno specifications.

Table 3. Summery specifications

Microcontroller ATmega328

Operating Voltage 5V

Digital I/O Pins 14

DC Current per I/O Pin 40 mA

Flash Memory 32 KB (ATmega328)

SRAM 1 KB (ATmega328)

Clock Speed 16 MHz

(Source: http://arduino.cc/en/Main/ArduinoBoardUno)

1.21 Components and Design

The Data Capture Unit is designed around the following components as shown in

figures 10, 11 & 12:

1) LCD Counter Screen - This is a 16 x 2 character LCD. It shows the:

e) Motor speed in hertz (Hz),

f) Total Cycle Count,

g) Time elapsed (When test completes),

h) Specimen Load.

2) LED Indicator - This indicates when the counter is activated.

3) Arduino Uno - This is the Microcontroller board which manages the other

components of the Data Capture Unit. It receives input data from the Load Cell

sensor, the Break Sensor, the Photo-interrupter Sensor and the Start/Abort button

processes it, then outputs the results to the LCD Counter Display and to the serial

port.

4) Potentiometer - This is use to control the brightness of the LCD.

5) Start/Abort Button - This is a momentary push button switch and it is the only

user input into the system. A single press activates the counter and starts a test. If

the counter is activated and the button is pressed again while a test is in progress

the system will change from activate to abort mode and stop the test. This will also

trigger the data logging program on the PC to auto delete any log data that was

previously captured and saved.

6) Photo-Interrupter Sensor - This sensor is connected to one of the Arduino

Uno external interrupts and it controls the counters used to calculate the motor

speed and the Total Cycle Count of the test.

7) Break Sensor - This is a momentary long hinge lever switch. It is connected to

the other Arduino Uno external interrupt. When a change in the state of the switch

is detected by the Uno, the system will immediately change state from Activated to

Test Complete, stop the motor and lock the Total Cycle counter.

Figure 10. Control Unit Architecture

Figure 11. Data Capture Unit wiring diagram

8) Start/Stop Relay - This relay is interfaced into the motor circuit of the fatigue

tester. Its is used to control the starting and stopping of the motor on the machine.

9) Load Cell Sensor - The image in the figure 11 is a place holder for the load cell

sensor. Figure 12 show the complete load cell circuitry. This sensor is used to

capture the load hanging from the specimen at the beginning of a test and any

variation in the load during the test. Table 4 show a summary of its specifications.

Figure 12. Load Cell Wiring Diagram

(Source:http://www.instructables.com/id/Arduino-Load-Cell-Scale/)

Table 4. Summary of the Load Cell specifications

Rated Load 5kg - (50N)

Safe Overload 150% - (123N)

Ultimate Overload 200% - (147N)

Operating Temperature Range -10 deg to 40 deg

(source:http://www.amazon.com/gp/product/B00900PALA/ref=oh_aui_detailpage_o07_s00?ie=UT

F8&psc=1)

1.22 Internal Program Logic and Control

Figure 13. The Data Capture Unit (DCU) program flow chart

The firmware code that implements the Data Capture Unit’s programming logic

was written to enable a real time system response. It was written in the Arduino

IDE using open source libraries. The current implementation have a total of 527

lines of code This is needed because the entire Data Capture and Logging

System Architecture interactions are time dependent. The system needs to be

able to:

a) Respond quickly to a user input.

b) Process the data output to the LCD and Serial port at fixed time intervals.

c) Respond immediately to every single rotation of the motor output shaft to

count the test cycle and measure motor speed.

d) Respond immediately to a complete break in the test specimen.

e) Keep track of the time elapsed during the test.

f) Measure the load applied to the specimen and keep track of any

variations during testing.

To achieve this level of real time response, a mixture of interrupt driven routines

and time scheduled tasks were used. The tasks were manually scheduled as a

part of the system programming and the scheduler implements a round robin

algorithm to manage the scheduled tasks at run time. The interrupt services

routines handlers ensure that time critical data generating events, such as those

generated by the break sensor and the photo-interrupter, are processed

immediately when they occur. Figure 13 show a simplified flow diagram detailing

the general programming logic. For a more detailed understanding of the process

see Appendix_ for the full source code.

1.23 Hardware Usage Procedure

Before the user setup the Fatigue testing machine to begin testing they must

follow the following procedure:

 Setup the Fatigue Data Logging Software.

 Setup the specimen in the Fatigue testing machine.

 Apply the required loads.

 Ensure that all safety covers are in place then plug in the power cable for the

machine.

 Ensure that the machine is clear of any impediments that can prevent the

rotation of the motor, then turn on the Data Capture Unit.Begin testing by

either pressing the Green Start/Abort button on the DCU or the Start Test

button on the Data Logging Software Control Panel. The system will now take

over and automate the entire test.

After test Completes:

 Remove the safety cover from the machine.

 Remove the loads used in the test.

 Remove the broken specimen.

 Clean work area.

 Repeat the above steps for a new test.

1.4 Poka Yoke

Despite the system simple design and limited room for user interaction, as users

use the system they are bound to make errors that can affect the overall system

operation. Part of the system design was to predict common user errors and

implement error correction/prevention measures in the system to minimize their

impact. The following outlines the precautions taken in each of the three

components of the system in this regard:

1) The Fatigue Tester Data Logging Software - The following are inherent in the

program design to minimize errors:

a) The user is only allowed to change setting, enter specimen properties or

use most Menu functions when a test is not in progress. During a test all

user input/output are blocked except those that are need to change data

views or save the graph.

b) The user is only allowed to view the log file in the Data Logger. They are

not allowed to make changes.

c) The program is design to automate the configuration of the graph and the

initial formatting of the output Log is fixed. The user can only change this

formatting by importing the log in a spreadsheet application like Excel.

Please note, if the user delete any of the columns in the file it would

render the log file useless and it would not be properly displayed when

reopened in the Data Logger.

d) The program is designed to automate the data logging process unless the

user select a manual update process. In that case the program presents

the user with a manual update button which the user can use to update

the log.

e) An error log was built in the system to capture errors produced by the

system due to user error or random system error. These are errors were

not predicted and designed for however, there is a built-in error handling

routine in each method/function that will ensure that these errors do not

stop the operation of the program. Only critical system errors outside the

control of the program will impact the program operation.

2) The Data Capture Unit - The Data Capture Unit was designed as a “black box”

with no visible way for the user to change settings or system control variables.

The only interaction the user have is to turn the system on and off and to

start/Abort a test. This ensures that the system always works the way it was

designed to work. To change any of the DCU configuration the system will need to

be reprogrammed.

	1.0 The System Architecture and Design Features
	1.1 The Fatigue Tester Data Logging Software
	1.11 Main GUI
	1.12 Graph GUI
	1.13 The Control Panel
	1.14 Internal Program Logic and Control
	1.15 Application Usage Procedure

	1.2 The Data Capture Unit
	1.21 Components and Design
	1.22 Internal Program Logic and Control
	1.23 Hardware Usage Procedure

	1.4 Poka Yoke

