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2-D vector rocket equations with air drag 

 

 

1. Burnout time 
 

The average mass of the rocket during boost is 

 

(1.1) 
2

P
A D

m
m m= +  

 

A
m  = Average mass [ kg ] 

D
m  = Rocket dry mass [ kg ] 

P
m  = Propellant mass [ kg ] 

 

The coast mass is equal to the rocket dry mass. 

 

The air drag 
D

F  for the rocket is given by  

 

(1.2) 2 1

2B RD t D R
F k v C Aρ= ⋅ = ⋅ ⋅ ⋅  

 

Bt
v  = Burnout velocity [

m

s
] 

ρ  = Air density [
3

kg

m
] 

RD
C  = Drag coefficient of the rocket [-] (0.75 for average rockets) 

R
A  = Rocket cross-sectional area [

2
m ] 

 

 

The thrust of the rocket 
T

F  is then 

 

(1.3) 2

BT A tF T m g k v= − ⋅ − ⋅  

 

 

T  = Motor thrust [ N ] 

g = Acceleration of gravity [
2

m

s
] 

 

The definition of force is 

 

(1.4) F m a= ⋅  
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As the mass is constant the factor rule in differentiation allows the mass to move outside 

the derivative operator, and the equation becomes 

 

(1.5) 
dv

F m
dt

= ⋅  

 

(1.6) 2

A A

dv
m T m g k v

dt
⋅ = − ⋅ − ⋅  

 

(1.7) 2

A A

dv
m T m g k v

dt
⋅ = − ⋅ − ⋅  

 

(1.8) 
2

2

A A

AA

m dv m dv
dt

T m gT m g k v
k k v

k

⋅ ⋅= = − ⋅− ⋅ − ⋅ ⋅ − ⋅
 

Substituting  2 A
T m g

x
k

− ⋅=  yields to 

 

(1.9) 
2 2 2 2

A A
m dv m dv

dt
k x k v k x v

⋅= = ⋅
⋅ − ⋅ −

 

 

To get now the burnout time 
B

t , we integrate over 
Bt

v  

 

(1.10) 
2 2

1
B

A
B t

m
t dv

k x v

 = ⋅  − 
∫  

 

(1.11) 
ln( ) ln( )

2

B Bt tA
B

x v v xm
t C

k x

+ − −
= ⋅ +  

 

With the condition 0
B

t =  (and thus 0
Bt

v = ) we can determine the integration constant 

C : 

 

(1.12) 
ln( ) ln( )

0
2

A
m x x

C
k x

− −⋅ + =  

 

(1.13) 
ln( ) ln( )

2

A
m x x

C
k x

− −= ⋅  

 

(1.14) 

( )ln( ) ln( ) ln( ) ln( )
ln( ) ln( ) ln( ) ln( )

2 2 2

B B

B B

t tA A A
B t t

x v v xm m mx x
t x v v x x x

k x k x k x

+ − − − −= ⋅ + ⋅ = ⋅ + − − + − −
⋅ ⋅
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(1.15) 

ln( ) ln( ) ln( ) ln( )
ln ln

2 2 2

B B B

B

t t tA A A
B

t

x v v x x vm m mx x x
t

k x k x k x x v x

  + − − + − − −
 = ⋅ + ⋅ = ⋅ +      ⋅ ⋅ −    

 

 

 

(1.16) ln
2

B

B

tA
B

t

x vm
t

k x x v

 +
= ⋅   ⋅ ⋅ − 

   Burnout time equation  

 

 

2. Burnout velocity 
 

Solving now for 
Bt

v : 

 

(1.17) 
2

ln B

B

t

B

A t

x vk x
t

m x v

 +⋅ ⋅ ⋅ =   − 
 

 

Substitution 
2

A

k x
y

m

⋅ ⋅=  

 

(1.18) ln B

B

t

B

t

x v
y t

x v

 +
⋅ =   − 

 

 

(1.19) BB

B

ty t

t

x v
e

x v

⋅ +
=

−
 

 

(1.20) ( )1B B

B

y t y t

t
x e x v e

⋅ ⋅⋅ − = + ⋅  

 

 

(1.21) 
1

1

B

B B

y t

t y t

e
v x

e

⋅

⋅

−= ⋅
+

  Burnout velocity equation 

 

 

The burnout time 
B

t  can be also written as 

 

sp e
B

I v
t

T g T
= =

⋅
 

 

sp
I  = Specific impulse [ s ] 
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e
v  = Effective exhaust velocity [

m

s
] 

 

3. Burnout altitude 
 

To get now the burnout velocity 
B

h  we need to integrate 1.21 over the burnout time: 

 

 

(1.22) 
( )2 ln 11

1

By ty t
B

B By t

x e t x ye
h x dt C

e y

⋅⋅

⋅

⋅ ⋅ + − ⋅ ⋅ −= ⋅ = + + 
∫  

 

(1.23) 
( )2 ln 1By t

B

B

x e t x y
h C

y

⋅⋅ ⋅ + − ⋅ ⋅
= +  

 

With the condition 0
B

h =  (and thus 0
B

t = ) we can determine the integration constant 

C : 

 

 (1.24) 
( )2 ln 2

0
x

C
y

⋅ ⋅
+ =  

 

(1.25) 
( )2 ln 2x

C
y

⋅ ⋅
= −  

 

(1.26) 
2 1

ln
2

By t

B B

x e
h t x

y

⋅ ⋅ += ⋅ − ⋅ 
 

 

 

Substitution 
2

A

k x
y

m

⋅ ⋅=  

 

(1.27) 
1

ln
2

By t

A
B B

m e
h t x

k

⋅ += ⋅ − ⋅ 
 

  Burnout altitude equation 1 

 

Replacing By t
e

⋅  by 

 

(1.28) B B

B

t y t

t

x v
e

x v

⋅+
=

−
 

 

yields to 
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(1.29) ln

B

A
B B

t

m x
h t x

k x v

 
= ⋅ − ⋅  − 

 

 

 

(1.30) ln
2

B

B

tA
B

t

x vm
t

k x x v

 +
= ⋅   ⋅ ⋅ − 

 

 

(1.31) ln ln
2

B

B B

tA A
B

t t

x vm mx
h x

k x v k x x v

    +
 = ⋅ − ⋅ ⋅       − ⋅ ⋅ −    

 

 

(1.32) ln ln
2

B

B B

tA A
B

t t

x vm mx
h

k x v k x v

   +
= ⋅ − ⋅      − ⋅ −   

 

 

(1.33) 
2

ln ln
2 2

B

B B

tA A
B

t t

x vm mx
h

k x v k x v

   +⋅= ⋅ − ⋅      ⋅ − ⋅ −   
 

 

(1.34) 

2

ln ln
2 2

B

B B

tA A
B

t t

x vm mx
h

k x v k x v

   +
= ⋅ − ⋅      ⋅ − ⋅ −   

 

 

(1.35) 

( )
2

2
ln

2

B

B
B

tA
B

t
t

x vm x
h

k x vx v

 − = ⋅ ⋅
 ⋅ +− 

 

 

 

(1.36) 
2

2 2
ln

2
B

A
B

t

m x
h

k x v

 
= ⋅   ⋅ − 

  Burnout altitude equation 2 

 

 

4. Coasting altitude 
 

 

After the rocket has reached the burnout altitude, the so called coasting phase begins. The 

rocket has then the dry mass 
D

m  and the initial velocity 
Bt

v . To derive the coast altitude 

C
h  we start again with the definition of force: 

 

(1.37) 
dv

F m a m v
dh

= ⋅ = ⋅ ⋅  
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(1.38) 2

D D

dv
m v m g k v

dh
⋅ ⋅ = − ⋅ − ⋅  

 

(1.39) 
2

D

D

m v dv
dh

m g k v

⋅ ⋅=
− ⋅ − ⋅

 

 

 

(1.40) 
2

D

D

m v dv
dh

m g
k k v

k

⋅ ⋅= − ⋅⋅ − ⋅
 

 

Substitution 2 D
m g

z
k

− ⋅=  

 

(1.41) 
2 2

D
m v dv

dh
k z v

⋅= ⋅
−

 

 

(1.42) 
2 2

D
m v dv

dh
k z v

⋅= ⋅
−

 

 

(1.43) 
2 2 B

D
C t

m v
h dv

k z v

 = ⋅  − 
∫  

 

(1.44) ( )2 2

2 2
ln

2

B

B B

B

tD D
C t t

t

vm m
h dv z v C

k z v k

 
= ⋅ = ⋅ − +  − ⋅ 

∫  

With the condition 0
C

h =  (and thus 0
Bt

v = ) we can determine the integration constant 

C : 

 

(1.45) ( )2ln 0
2

D
m

z C
k

⋅ + =
⋅

 

 

(1.46) ( )2ln
2

D
m

C z
k

= − ⋅
⋅

 

 

(1.47) ( ) ( )2 2 2ln ln
2 2B

D D
C t

m m
h z v z

k k
= ⋅ − − ⋅

⋅ ⋅
 

 

 

(1.48) 

2 2

2
ln

2

BtD
C

z vm
h

k z

 −
= ⋅   ⋅  

  Coast altitude equation 
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5. Coast time 
 

To determinate the time 
C

t  from 
Bt

v to 0 (coasting time), the starting point is again the 

definition of force. The acceleration is here negative: 

(1.49) ( ) dv
F m a m

dt

 = ⋅ − = ⋅ − 
 

 

 

(1.50) 2

C C

dv
m m g k v

dt

 ⋅ − = − ⋅ − ⋅ 
 

 

 

(1.51) 
2C

C

dv
dt m

m g k v
= ⋅

⋅ + ⋅
 

 

(1.52) 
2

C
C

dv
dt m

m g
k k v

k

= ⋅ ⋅⋅ + ⋅
 

 

Substitution 2 C
a

m g
z

k

⋅=  

 

(1.53) 
2 2

C

a

m dv
dt

k z v
= ⋅

+
 

 

(1.54) 
2 2

arctan
1

B

B

t

aC C
C t

a a

v

zm m
t dv C

k z v k z

 
 

   = ⋅ = ⋅ + + 
∫  

 

With the condition 0
C

t =  (and thus 0
Bt

v = ) we can determine the integration constant 

C : 

 

(1.55) 

0
arctan

0 0
aC

a

zm
C C

k z

 
 
 ⋅ + = ⇒ =  

 

 

(1.56) arctan BtC
C

a a

vm
t

k z z

 
= ⋅  ⋅  

  Coast time equation 
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6. Parachute size 
 

The desired maximum decent velocity for a rocket is 3-5 
m

s
. Therefore the parachute size 

needs to be accordingly calculated.  

 

The maximum velocity 
E

v  is then reached if the acceleration 0a = , hence 

 

(1.57) 21
0

2 PD D P
F m a m g C A vρ= ⋅ = = ⋅ − ⋅ ⋅ ⋅ ⋅  

 

 (1.58) 
2

P

D
E

D P

m g
v

C Aρ
⋅ ⋅=

⋅ ⋅
 

 

PD
C  = Drag coefficient of the rocket [-] (0.75 for a flat sheet used for a parachute, or 1.5 

for a true dome-shaped chute). 

R
A  = Parachute area [

2
m ] 

 

Solving for 
P

A : 

 

(1.59) 
2

2

P

D
P

E D

m g
A

v C ρ
⋅ ⋅=
⋅ ⋅

   

 

The chute area is 
2

4

P
P

D
A

π ⋅= , so the chute diameter is 

 

 

 

(1.60) 
2

8

P

D
P

E D

m g
D

v Cπ ρ
⋅ ⋅=

⋅ ⋅ ⋅
              Parachute diameter equation 

 

 

 


