2-D vector rocket equations with air drag

1. Burnout time

The average mass of the rocket during boost is

$$(1.1) \ m_{A} = m_{D} + \frac{m_{P}}{2}$$

 m_A = Average mass [kg] m_D = Rocket dry mass [kg] m_P = Propellant mass [kg]

The coast mass is equal to the rocket dry mass.

The air drag F_D for the rocket is given by

(1.2)
$$F_D = k \cdot v_{t_B}^2 = \frac{1}{2} \cdot \rho \cdot C_{D_R} \cdot A_R$$

$$v_{t_B}$$
 = Burnout velocity $[\frac{m}{s}]$
 ρ = Air density $[\frac{kg}{m^3}]$
 C_{D_R} = Drag coefficient of the rocket [-] (0.75 for average rockets)
 A_R = Rocket cross-sectional area $[m^2]$

The thrust of the rocket F_T is then

(1.3)
$$F_T = T - m_A \cdot g - k \cdot v_{t_B}^2$$

$$T = \text{Motor thrust} [N]$$

g = Acceleration of gravity $[\frac{m}{s^2}]$

The definition of force is

(1.4)
$$F = m \cdot a$$

As the mass is constant the factor rule in differentiation allows the mass to move outside the derivative operator, and the equation becomes

(1.5)
$$F = m \cdot \frac{dv}{dt}$$

(1.6) $m_A \cdot \frac{dv}{dt} = T - m_A \cdot g - k \cdot v^2$
(1.7) $m_A \cdot \frac{dv}{dt} = T - m_A \cdot g - k \cdot v^2$
(1.8) $dt = \frac{m_A \cdot dv}{T - m_A \cdot g - k \cdot v^2} = \frac{m_A \cdot dv}{k \cdot \frac{T - m_A \cdot g}{k} - k \cdot v^2}$

Substituting
$$x^2 = \frac{I - m_A \cdot g}{k}$$
 yields to

(1.9)
$$dt = \frac{m_A \cdot dv}{k \cdot x^2 - k \cdot v^2} = \frac{m_A}{k} \cdot \frac{dv}{x^2 - v^2}$$

To get now the burnout time t_B , we integrate over v_{t_B}

(1.10)
$$t_B = \frac{m_A}{k} \cdot \int \left(\frac{1}{x^2 - v^2}\right) dv_{t_B}$$

(1.11) $t_B = \frac{m_A}{k} \cdot \frac{\ln(x + v_{t_B}) - \ln(v_{t_B} - x)}{2x} + C$

With the condition $t_B = 0$ (and thus $v_{t_B} = 0$) we can determine the integration constant *C*:

$$(1.12) \frac{m_{A}}{k} \cdot \frac{\ln(x) - \ln(-x)}{2x} + C = 0$$

$$(1.13) C = \frac{m_{A}}{k} \cdot \frac{\ln(-x) - \ln(x)}{2x}$$

$$(1.14)$$

$$t_{B} = \frac{m_{A}}{k} \cdot \frac{\ln(x + v_{t_{B}}) - \ln(v_{t_{B}} - x)}{2x} + \frac{m_{A}}{k} \cdot \frac{\ln(-x) - \ln(x)}{2x} = \frac{m_{A}}{2 \cdot k \cdot x} \cdot \left(\ln(x + v_{t_{B}}) - \ln(v_{t_{B}} - x) + \ln(-x) - \ln(x)\right)$$

(1.15)
$$t_{B} = \frac{m_{A}}{k} \cdot \frac{\ln(x + v_{t_{B}}) - \ln(v_{t_{B}} - x)}{2x} + \frac{m_{A}}{k} \cdot \frac{\ln(-x) - \ln(x)}{2x} = \frac{m_{A}}{2 \cdot k \cdot x} \cdot \left(\ln\left(\frac{x + v_{t_{B}}}{x}\right) + \ln\left(\frac{-x}{v_{t_{B}} - x}\right)\right)$$

(1.16)
$$t_B = \frac{m_A}{2 \cdot k \cdot x} \cdot \ln\left(\frac{x + v_{t_B}}{x - v_{t_B}}\right)$$

Burnout time equation

2. Burnout velocity

Solving now for v_{t_B} :

(1.17)
$$\frac{2 \cdot k \cdot x}{m_A} \cdot t_B = \ln\left(\frac{x + v_{t_B}}{x - v_{t_B}}\right)$$

Substitution $y = \frac{2 \cdot k \cdot x}{m_A}$

(1.18)
$$y \cdot t_B = \ln\left(\frac{x + v_{t_B}}{x - v_{t_B}}\right)$$

$$(1.19) \ e^{y \cdot t_B} = \frac{x + v_{t_B}}{x - v_{t_B}}$$

(1.20)
$$x \cdot e^{y \cdot t_B} - x = v_{t_B} \left(1 + \cdot e^{y \cdot t_B} \right)$$

(1.21)
$$v_{t_B} = x \cdot \frac{e^{y \cdot t_B} - 1}{e^{y \cdot t_B} + 1}$$

The burnout time t_B can be also written as

$$t_B = \frac{I_{sp}}{T} = \frac{v_e}{g \cdot T}$$

 I_{sp} = Specific impulse [s]

Burnout velocity equation

$$v_e$$
 = Effective exhaust velocity [$\frac{m}{s}$]

3. Burnout altitude

To get now the burnout velocity h_{B} we need to integrate 1.21 over the burnout time:

(1.22)
$$h_B = \int \left(x \cdot \frac{e^{y \cdot t} - 1}{e^{y \cdot t} + 1}\right) dt_B = \frac{2 \cdot x \cdot \ln\left(e^{y \cdot t_B} + 1\right) - t_B \cdot x \cdot y}{y} + C$$

(1.23)
$$h_B = \frac{2 \cdot x \cdot \ln(e^{y \cdot t_B} + 1) - t_B \cdot x \cdot y}{y} + C$$

With the condition $h_B = 0$ (and thus $t_B = 0$) we can determine the integration constant *C*:

(1.24)
$$\frac{2 \cdot x \cdot \ln(2)}{y} + C = 0$$

$$(1.25) \ C = -\frac{2 \cdot x \cdot \ln(2)}{y}$$

(1.26)
$$h_B = \frac{2 \cdot x}{y} \cdot \ln\left(\frac{e^{y \cdot t_B} + 1}{2}\right) - t_B \cdot x$$

Substitution
$$y = \frac{2 \cdot k \cdot x}{m_A}$$

(1.27)
$$h_B = \frac{m_A}{k} \cdot \ln\left(\frac{e^{y \cdot t_B} + 1}{2}\right) - t_B \cdot x$$

Burnout altitude equation 1

Replacing $e^{y \cdot t_B}$ by

$$(1.28) \ \frac{x + v_{t_B}}{x - v_{t_B}} = e^{y \cdot t_B}$$

yields to

(1.29)
$$h_B = \frac{m_A}{k} \cdot \ln\left(\frac{x}{x - v_{t_B}}\right) - t_B \cdot x$$

$$(1.30) \ t_{B} = \frac{m_{A}}{2 \cdot k \cdot x} \cdot \ln\left(\frac{x + v_{t_{B}}}{x - v_{t_{B}}}\right)$$

$$(1.31) \ h_{B} = \frac{m_{A}}{k} \cdot \ln\left(\frac{x}{x - v_{t_{B}}}\right) - \left(\frac{m_{A}}{2 \cdot k \cdot x} \cdot \ln\left(\frac{x + v_{t_{B}}}{x - v_{t_{B}}}\right)\right) \cdot x$$

$$(1.32) \ h_{B} = \frac{m_{A}}{k} \cdot \ln\left(\frac{x}{x - v_{t_{B}}}\right) - \frac{m_{A}}{2 \cdot k} \cdot \ln\left(\frac{x + v_{t_{B}}}{x - v_{t_{B}}}\right)$$

$$(1.33) \ h_{B} = \frac{2 \cdot m_{A}}{2 \cdot k} \cdot \ln\left(\frac{x}{x - v_{t_{B}}}\right) - \frac{m_{A}}{2 \cdot k} \cdot \ln\left(\frac{x + v_{t_{B}}}{x - v_{t_{B}}}\right)$$

$$(1.34) \ h_{B} = \frac{m_{A}}{2 \cdot k} \cdot \ln\left(\frac{x}{x - v_{t_{B}}}\right)^{2} - \frac{m_{A}}{2 \cdot k} \cdot \ln\left(\frac{x + v_{t_{B}}}{x - v_{t_{B}}}\right)$$

$$(1.35) \ h_{B} = \frac{m_{A}}{2 \cdot k} \cdot \ln\left(\frac{x^{2}}{(x - v_{t_{B}})^{2}} \cdot \frac{x - v_{t_{B}}}{x + v_{t_{B}}}\right)$$

$$(1.36) \ h_{B} = \frac{m_{A}}{2 \cdot k} \cdot \ln\left(\frac{x^{2}}{x^{2} - v_{t_{B}}^{2}}\right)$$

Burnout altitude equation 2

4. Coasting altitude

After the rocket has reached the burnout altitude, the so called coasting phase begins. The rocket has then the dry mass m_D and the initial velocity v_{t_B} . To derive the coast altitude h_C we start again with the definition of force:

(1.37)
$$F = m \cdot a = m \cdot v \cdot \frac{dv}{dh}$$

(1.38)
$$m_D \cdot v \cdot \frac{dv}{dh} = -m_D \cdot g - k \cdot v^2$$

(1.39)
$$dh = \frac{m_D \cdot v \cdot dv}{-m_D \cdot g - k \cdot v^2}$$

(1.40)
$$dh = \frac{m_D \cdot v \cdot dv}{k \cdot \frac{-m_D \cdot g}{k} - k \cdot v^2}$$

Substitution
$$z^2 = \frac{-m_D \cdot g}{k}$$

$$(1.41) \ dh = \frac{m_D}{k} \cdot \frac{v \cdot dv}{z^2 - v^2}$$

$$(1.42) \ dh = \frac{m_D}{k} \cdot \frac{v \cdot dv}{z^2 - v^2}$$

(1.43)
$$h_C = \frac{m_D}{k} \cdot \int \left(\frac{v}{z^2 - v^2}\right) dv_{t_B}$$

(1.44)
$$h_C = \frac{m_D}{k} \cdot \int \left(\frac{v_{t_B}}{z^2 - v_{t_B}^2}\right) dv_{t_B} = \frac{m_D}{2 \cdot k} \cdot \ln\left(z^2 - v_{t_B}^2\right) + C$$

With the condition $h_C = 0$ (and thus $v_{t_B} = 0$) we can determine the integration constant *C*:

$$(1.45) \ \frac{m_D}{2 \cdot k} \cdot \ln(z^2) + C = 0$$

$$(1.46) \ C = -\frac{m_D}{2 \cdot k} \cdot \ln(z^2)$$

$$(1.47) \ h_C = \frac{m_D}{2 \cdot k} \cdot \ln(z^2 - v_{t_B}^2) - \frac{m_D}{2 \cdot k} \cdot \ln(z^2)$$

$$(1.48) \ h_C = \frac{m_D}{2 \cdot k} \cdot \ln\left(\frac{z^2 - v_{t_B}^2}{z^2}\right)$$

Coast altitude equation

5. Coast time

To determinate the time t_c from v_{t_B} to 0 (coasting time), the starting point is again the definition of force. The acceleration is here negative:

(1.49)
$$F = m \cdot (-a) = m \cdot \left(-\frac{dv}{dt}\right)$$

(1.50)
$$m_C \cdot \left(-\frac{dv}{dt}\right) = -m_C \cdot g - k \cdot v^2$$

(1.51)
$$dt = m_C \cdot \frac{dv}{m_C \cdot g + k \cdot v^2}$$

(1.52)
$$dt = m_C \cdot \frac{dv}{k \cdot \frac{m_C \cdot g}{k} + k \cdot v^2}$$

Substitution $z_a^2 = \frac{m_C \cdot g}{k}$

$$(1.53) dt = \frac{m_C}{k} \cdot \frac{dv}{z_a^2 + v^2}$$

(1.54)
$$t_C = \frac{m_C}{k} \cdot \int \left(\frac{1}{z_a^2 + v^2}\right) dv_{t_B} = \frac{m_C}{k} \cdot \frac{\arctan\left(\frac{v_{t_B}}{z_a}\right)}{z_a} + C$$

With the condition $t_c = 0$ (and thus $v_{t_B} = 0$) we can determine the integration constant *C*:

(1.55)
$$\frac{m_C}{k} \cdot \frac{\arctan\left(\frac{0}{z_a}\right)}{z_a} + C = 0 \Longrightarrow C = 0$$

(1.56)
$$t_C = \frac{m_C}{k \cdot z_a} \cdot \arctan\left(\frac{v_{t_B}}{z_a}\right)$$

Coast time equation

6. Parachute size

The desired maximum decent velocity for a rocket is 3-5 $\frac{m}{s}$. Therefore the parachute size needs to be accordingly calculated.

The maximum velocity v_E is then reached if the acceleration a = 0, hence

(1.57)
$$F = m \cdot a = 0 = m_D \cdot g - \frac{1}{2} \cdot C_{D_P} \cdot \rho \cdot A_P \cdot v^2$$

(1.58)
$$v_E = \sqrt{\frac{2 \cdot m_D \cdot g}{C_{D_P} \cdot \rho \cdot A_P}}$$

 C_{D_p} = Drag coefficient of the rocket [-] (0.75 for a flat sheet used for a parachute, or 1.5 for a true dome-shaped chute). A_R = Parachute area [m^2]

Solving for A_p :

(1.59)
$$A_P = \frac{2 \cdot m_D \cdot g}{v_E^2 \cdot C_{D_P} \cdot \rho}$$

The chute area is $A_p = \frac{\pi \cdot D_p^2}{4}$, so the chute diameter is

(1.60)
$$D_{p} = \sqrt{\frac{8 \cdot m_{D} \cdot g}{\pi \cdot v_{E}^{2} \cdot C_{D_{p}} \cdot \rho}}$$

Parachute diameter equation