2-D vector rocket equations with air drag

1. Burnout time

The average mass of the rocket during boost is
(1.1) $m_{A}=m_{D}+\frac{m_{P}}{2}$
$m_{A}=$ Average mass [$k g$]
$m_{D}=$ Rocket dry mass [kg]
$m_{P}=$ Propellant mass [kg]
The coast mass is equal to the rocket dry mass.
The air drag F_{D} for the rocket is given by
(1.2) $F_{D}=k \cdot v_{t_{B}}^{2}=\frac{1}{2} \cdot \rho \cdot C_{D_{R}} \cdot A_{R}$
$v_{t_{B}}=$ Burnout velocity $\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$
$\rho=$ Air density $\left[\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right]$
$C_{D_{R}}=$ Drag coefficient of the rocket [-] (0.75 for average rockets)
$A_{R}=$ Rocket cross-sectional area $\left[\mathrm{m}^{2}\right]$

The thrust of the rocket F_{T} is then
(1.3) $F_{T}=T-m_{A} \cdot g-k \cdot v_{t_{B}}^{2}$
$T=$ Motor thrust [N]
$g=$ Acceleration of gravity [$\frac{m}{s^{2}}$]
The definition of force is
(1.4) $F=m \cdot a$

As the mass is constant the factor rule in differentiation allows the mass to move outside the derivative operator, and the equation becomes
(1.5) $F=m \cdot \frac{d v}{d t}$
(1.6) $m_{A} \cdot \frac{d v}{d t}=T-m_{A} \cdot g-k \cdot v^{2}$
(1.7) $m_{A} \cdot \frac{d v}{d t}=T-m_{A} \cdot g-k \cdot v^{2}$
(1.8) $d t=\frac{m_{A} \cdot d v}{T-m_{A} \cdot g-k \cdot v^{2}}=\frac{m_{A} \cdot d v}{k \cdot \frac{T-m_{A} \cdot g}{k}-k \cdot v^{2}}$

Substituting $x^{2}=\frac{T-m_{A} \cdot g}{k}$ yields to
(1.9) $d t=\frac{m_{A} \cdot d v}{k \cdot x^{2}-k \cdot v^{2}}=\frac{m_{A}}{k} \cdot \frac{d v}{x^{2}-v^{2}}$

To get now the burnout time t_{B}, we integrate over $v_{t_{B}}$
(1.10) $t_{B}=\frac{m_{A}}{k} \cdot \int\left(\frac{1}{x^{2}-v^{2}}\right) d v_{t_{B}}$
(1.11) $t_{B}=\frac{m_{A}}{k} \cdot \frac{\ln \left(x+v_{t_{B}}\right)-\ln \left(v_{t_{B}}-x\right)}{2 x}+C$

With the condition $t_{B}=0$ (and thus $v_{t_{B}}=0$) we can determine the integration constant C :
(1.12) $\frac{m_{A}}{k} \cdot \frac{\ln (x)-\ln (-x)}{2 x}+C=0$

$$
\begin{equation*}
C=\frac{m_{A}}{k} \cdot \frac{\ln (-x)-\ln (x)}{2 x} \tag{1.13}
\end{equation*}
$$

$t_{B}=\frac{m_{A}}{k} \cdot \frac{\ln \left(x+v_{t_{B}}\right)-\ln \left(v_{t_{B}}-x\right)}{2 x}+\frac{m_{A}}{k} \cdot \frac{\ln (-x)-\ln (x)}{2 x}=\frac{m_{A}}{2 \cdot k \cdot x} \cdot\left(\ln \left(x+v_{t_{B}}\right)-\ln \left(v_{t_{B}}-x\right)+\ln (-x)-\ln (x)\right)$

$$
\begin{equation*}
t_{B}=\frac{m_{A}}{k} \cdot \frac{\ln \left(x+v_{t_{B}}\right)-\ln \left(v_{t_{B}}-x\right)}{2 x}+\frac{m_{A}}{k} \cdot \frac{\ln (-x)-\ln (x)}{2 x}=\frac{m_{A}}{2 \cdot k \cdot x} \cdot\left(\ln \left(\frac{x+v_{t_{B}}}{x}\right)+\ln \left(\frac{-x}{v_{t_{B}}-x}\right)\right) \tag{1.15}
\end{equation*}
$$

Burnout time equation

2. Burnout velocity

Solving now for $v_{t_{B}}$:
(1.17) $\frac{2 \cdot k \cdot x}{m_{A}} \cdot t_{B}=\ln \left(\frac{x+v_{t_{B}}}{x-v_{t_{B}}}\right)$

Substitution $y=\frac{2 \cdot k \cdot x}{m_{A}}$
(1.18) $y \cdot t_{B}=\ln \left(\frac{x+v_{t_{B}}}{x-v_{t_{B}}}\right)$
(1.19) $e^{y \cdot t_{B}}=\frac{x+v_{t_{B}}}{x-v_{t_{B}}}$
(1.20) $x \cdot e^{y t_{B}}-x=v_{t_{B}}\left(1+\cdot e^{y t_{B}}\right)$
(1.21) $v_{t_{B}}=x \cdot \frac{e^{y \cdot t_{B}}-1}{e^{y t_{B}}+1}$

Burnout velocity equation

The burnout time t_{B} can be also written as
$t_{B}=\frac{I_{s p}}{T}=\frac{v_{e}}{g \cdot T}$
$I_{s p}=$ Specific impulse $[s]$
$v_{e}=$ Effective exhaust velocity $\left[\frac{m}{s}\right]$

3. Burnout altitude

To get now the burnout velocity h_{B} we need to integrate 1.21 over the burnout time:
(1.22) $h_{B}=\int\left(x \cdot \frac{e^{y \cdot t}-1}{e^{y \cdot t}+1}\right) d t_{B}=\frac{2 \cdot x \cdot \ln \left(e^{y \cdot t_{B}}+1\right)-t_{B} \cdot x \cdot y}{y}+C$
(1.23) $h_{B}=\frac{2 \cdot x \cdot \ln \left(e^{y \cdot t_{B}}+1\right)-t_{B} \cdot x \cdot y}{y}+C$

With the condition $h_{B}=0$ (and thus $t_{B}=0$) we can determine the integration constant C :
(1.24) $\frac{2 \cdot x \cdot \ln (2)}{y}+C=0$
(1.25) $C=-\frac{2 \cdot x \cdot \ln (2)}{y}$
(1.26) $h_{B}=\frac{2 \cdot x}{y} \cdot \ln \left(\frac{e^{y t_{B}}+1}{2}\right)-t_{B} \cdot x$

Substitution $y=\frac{2 \cdot k \cdot x}{m_{A}}$
(1.27) $h_{B}=\frac{m_{A}}{k} \cdot \ln \left(\frac{e^{y t_{B}}+1}{2}\right)-t_{B} \cdot x$

Replacing $e^{y t_{B}}$ by
(1.28) $\frac{x+v_{t_{B}}}{x-v_{t_{B}}}=e^{y t_{B}}$
yields to
(1.29) $h_{B}=\frac{m_{A}}{k} \cdot \ln \left(\frac{x}{x-v_{t_{B}}}\right)-t_{B} \cdot x$
(1.30) $t_{B}=\frac{m_{A}}{2 \cdot k \cdot x} \cdot \ln \left(\frac{x+v_{t_{B}}}{x-v_{t_{B}}}\right)$
(1.31) $h_{B}=\frac{m_{A}}{k} \cdot \ln \left(\frac{x}{x-v_{t_{B}}}\right)-\left(\frac{m_{A}}{2 \cdot k \cdot x} \cdot \ln \left(\frac{x+v_{t_{B}}}{x-v_{t_{B}}}\right)\right) \cdot x$
(1.32) $h_{B}=\frac{m_{A}}{k} \cdot \ln \left(\frac{x}{x-v_{t_{B}}}\right)-\frac{m_{A}}{2 \cdot k} \cdot \ln \left(\frac{x+v_{t_{B}}}{x-v_{t_{B}}}\right)$
(1.33) $h_{B}=\frac{2 \cdot m_{A}}{2 \cdot k} \cdot \ln \left(\frac{x}{x-v_{t_{B}}}\right)-\frac{m_{A}}{2 \cdot k} \cdot \ln \left(\frac{x+v_{t_{B}}}{x-v_{t_{B}}}\right)$
(1.34) $h_{B}=\frac{m_{A}}{2 \cdot k} \cdot \ln \left(\frac{x}{x-v_{t_{B}}}\right)^{2}-\frac{m_{A}}{2 \cdot k} \cdot \ln \left(\frac{x+v_{t_{B}}}{x-v_{t_{B}}}\right)$
(1.35) $h_{B}=\frac{m_{A}}{2 \cdot k} \cdot \ln \left(\frac{x^{2}}{\left(x-v_{t_{B}}\right)^{2}} \cdot \frac{x-v_{t_{B}}}{x+v_{t_{B}}}\right)$
(1.36) $h_{B}=\frac{m_{A}}{2 \cdot k} \cdot \ln \left(\frac{x^{2}}{x^{2}-v_{t_{B}}^{2}}\right)$

Burnout altitude equation 2

4. Coasting altitude

After the rocket has reached the burnout altitude, the so called coasting phase begins. The rocket has then the dry mass m_{D} and the initial velocity $v_{t_{B}}$. To derive the coast altitude h_{C} we start again with the definition of force:
(1.37) $F=m \cdot a=m \cdot v \cdot \frac{d v}{d h}$
(1.38) $m_{D} \cdot v \cdot \frac{d v}{d h}=-m_{D} \cdot g-k \cdot v^{2}$
(1.39) $d h=\frac{m_{D} \cdot v \cdot d v}{-m_{D} \cdot g-k \cdot v^{2}}$
(1.40) $d h=\frac{m_{D} \cdot v \cdot d v}{k \cdot \frac{-m_{D} \cdot g}{k}-k \cdot v^{2}}$

Substitution $z^{2}=\frac{-m_{D} \cdot g}{k}$
(1.41) $d h=\frac{m_{D}}{k} \cdot \frac{v \cdot d v}{z^{2}-v^{2}}$
(1.42) $d h=\frac{m_{D}}{k} \cdot \frac{v \cdot d v}{z^{2}-v^{2}}$
(1.43) $h_{C}=\frac{m_{D}}{k} \cdot \int\left(\frac{v}{z^{2}-v^{2}}\right) d v_{t_{B}}$
(1.44) $h_{C}=\frac{m_{D}}{k} \cdot \int\left(\frac{v_{t_{B}}}{z^{2}-v_{t_{B}}^{2}}\right) d v_{t_{B}}=\frac{m_{D}}{2 \cdot k} \cdot \ln \left(z^{2}-v_{t_{B}}^{2}\right)+C$

With the condition $h_{C}=0$ (and thus $v_{t_{B}}=0$) we can determine the integration constant C :
(1.45) $\frac{m_{D}}{2 \cdot k} \cdot \ln \left(z^{2}\right)+C=0$
(1.46) $C=-\frac{m_{D}}{2 \cdot k} \cdot \ln \left(z^{2}\right)$
(1.47) $h_{C}=\frac{m_{D}}{2 \cdot k} \cdot \ln \left(z^{2}-v_{t_{B}}^{2}\right)-\frac{m_{D}}{2 \cdot k} \cdot \ln \left(z^{2}\right)$
(1.48) $h_{C}=\frac{m_{D}}{2 \cdot k} \cdot \ln \left(\frac{z^{2}-v_{t_{B}}^{2}}{z^{2}}\right)$

5. Coast time

To determinate the time t_{C} from $v_{t_{B}}$ to 0 (coasting time), the starting point is again the definition of force. The acceleration is here negative:
(1.49) $F=m \cdot(-a)=m \cdot\left(-\frac{d v}{d t}\right)$
(1.50) $m_{C} \cdot\left(-\frac{d v}{d t}\right)=-m_{C} \cdot g-k \cdot v^{2}$
$(1.51) d t=m_{C} \cdot \frac{d v}{m_{C} \cdot g+k \cdot v^{2}}$
(1.52) $d t=m_{C} \cdot \frac{d v}{k \cdot \frac{m_{C} \cdot g}{k}+k \cdot v^{2}}$

Substitution $z_{a}{ }^{2}=\frac{m_{C} \cdot g}{k}$
(1.53) $d t=\frac{m_{C}}{k} \cdot \frac{d v}{z_{a}^{2}+v^{2}}$
(1.54) $t_{C}=\frac{m_{C}}{k} \cdot \int\left(\frac{1}{z_{a}^{2}+v^{2}}\right) d v_{t_{B}}=\frac{m_{C}}{k} \cdot \frac{\arctan \left(\frac{v_{t_{B}}}{z_{a}}\right)}{z_{a}}+C$

With the condition $t_{C}=0$ (and thus $v_{t_{B}}=0$) we can determine the integration constant C :
(1.55) $\frac{m_{C}}{k} \cdot \frac{\arctan \left(\frac{0}{z_{a}}\right)}{z_{a}}+C=0 \Rightarrow C=0$

$$
\text { (1.56) } t_{C}=\frac{m_{C}}{k \cdot z_{a}} \cdot \arctan \left(\frac{v_{t_{B}}}{z_{a}}\right)
$$

6. Parachute size

The desired maximum decent velocity for a rocket is $3-5 \frac{\mathrm{~m}}{\mathrm{~s}}$. Therefore the parachute size needs to be accordingly calculated.

The maximum velocity v_{E} is then reached if the acceleration $a=0$, hence
(1.57) $F=m \cdot a=0=m_{D} \cdot g-\frac{1}{2} \cdot C_{D_{P}} \cdot \rho \cdot A_{P} \cdot v^{2}$
(1.58) $v_{E}=\sqrt{\frac{2 \cdot m_{D} \cdot g}{C_{D_{P}} \cdot \rho \cdot A_{P}}}$
$C_{D_{p}}=$ Drag coefficient of the rocket [-] (0.75 for a flat sheet used for a parachute, or 1.5 for a true dome-shaped chute).
$A_{R}=$ Parachute area [m^{2}]

Solving for A_{P} :
(1.59) $A_{P}=\frac{2 \cdot m_{D} \cdot g}{v_{E}^{2} \cdot C_{D_{P}} \cdot \rho}$

The chute area is $A_{P}=\frac{\pi \cdot D_{P}^{2}}{4}$, so the chute diameter is
(1.60) $D_{P}=\sqrt{\frac{8 \cdot m_{D} \cdot g}{\pi \cdot v_{E}^{2} \cdot C_{D_{P}} \cdot \rho}}$

Parachute diameter equation

