
4 pixel camera sensor - angle of incidence computation

The four pin photodiodes are arranged as shown below and divided into 4 quadrants. Half of the photo sensitive surfaces of photodiode 1 and 2 belong to quadrant 1, half of the photo sensitive surfaces of photodiode 1 and 4 belong to quadrant 2, and so on. A simple algorithm determinates in a first step, in which quadrant the largest amount of light is detected. Then the angle of incidence is computed.

Let I_1 to I_4 be the measured intensity of light, which is linear to the output voltages of the op amp stages. The MCU will map input voltages between 0 and 5 volts into integer values between 0 and 1023, so I_1 to I_4 will have according values. We can now interpret these values geometrically as shown above. The sum of I_1 and I_2 can be interpreted as the length of the hypotenuse of an isosceles triangle with the side length c. If $I_1=0$, the angle of detected light source α will be 0°, if $I_2=0$, α will be 90°, if $I_1=I_2$, α will be 45°, etc.

We are starting to compute the angle of detected light source α_1 for quadrant 1:

$$2 \cdot c^{2} = (I_{1} + I_{2})^{2}$$

$$c^{2} = \frac{(I_{1} + I_{2})^{2}}{2}$$

$$c = \sqrt{\frac{(I_{1} + I_{2})^{2}}{2}}$$

$$c = \frac{I_{1} + I_{2}}{\sqrt{2}}$$

$$b^{2} = I_{1}^{2} + \frac{(I_{1} + I_{2})^{2}}{2} - 2 \cdot I_{1} \cdot \frac{I_{1} + I_{2}}{\sqrt{2}} \cdot \cos(45^{\circ})$$

$$\cos 45^{\circ} = \frac{1}{\sqrt{2}}$$

$$b^2 = {I_1}^2 + \frac{(I_1 + I_2)^2}{2} - I_1 \cdot (I_1 + I_2)$$

$$b^{2} = I_{1}^{2} + \frac{I_{1}^{2} + 2 \cdot I_{1} \cdot I_{2} + I_{2}^{2}}{2} - I_{1} \cdot (I_{1} + I_{2})$$

$$b^2 = {I_1}^2 + \frac{{I_1}^2 + 2 \cdot I_1 \cdot I_2 + {I_2}^2}{2} - {I_1}^2 - {I_1} \cdot I_2$$

$$b^2 = \frac{{I_1}^2 + 2 \cdot I_1 \cdot I_2 + {I_2}^2}{2} - I_1 \cdot I_2$$

$$b^2 = \frac{{I_1}^2 + {I_2}^2}{2}$$

$$b = \sqrt{\frac{{I_1}^2 + {I_2}^2}{2}}$$

$$\frac{I_1}{\sin(\alpha_1)} = \frac{\sqrt{\frac{{I_1}^2 + {I_2}^2}{2}}}{\sin(45^\circ)}$$

$$\sin 45^{\circ} = \frac{1}{\sqrt{2}}$$

$$\frac{I_1}{\sin(\alpha_1)} = \sqrt{2} \cdot \sqrt{\frac{{I_1}^2 + {I_2}^2}{2}}$$

$$\frac{I_1}{\sin(\alpha_1)} = \sqrt{{I_1}^2 + {I_2}^2}$$

$$\sin(\alpha_1) = \frac{I_1}{\sqrt{{I_1}^2 + {I_2}^2}}$$

$$\alpha_1 = \arcsin\left(\frac{I_1}{\sqrt{{I_1}^2 + {I_2}^2}}\right)$$

Analog for the other 3 quadrants:

$$\alpha_2 = \arcsin\left(\frac{I_4}{\sqrt{{I_1}^2 + {I_4}^2}}\right) + 90^\circ$$

$$\alpha_3 = \arcsin\left(\frac{I_3}{\sqrt{{I_3}^2 + {I_4}^2}}\right) + 180^\circ$$

$$\alpha_4 = \arcsin\left(\frac{I_2}{\sqrt{{I_2}^2 + {I_3}^2}}\right) + 270^\circ$$